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ABSTRACT: We give a method of deriving the field-strengths of all massless and massive
maximal supergravity theories in any dimension starting from the Kac-Moody algebra FE1;.
Considering the subalgebra of Fq; that acts on the fields in the non-linear realisation as a
global symmetry, we show how this is promoted to a gauge symmetry enlarging the algebra
by the inclusion of additional generators. We show how this works in eleven dimensions, and

we call the resulting enlarged algebra Eﬁcal. Torus reduction to D dimensions corresponds

to taking a subalgebra of Eﬁcal, called Eﬁf%l, that encodes the full gauge algebra of the
corresponding D-dimensional massless supergravity. We show that each massive maximal
supergravity in D dimensions is a non-linear realisation of an algebra Eﬁ% We show how
this works in detail for the case of Scherk-Schwarz reduction of I1IB to nine dimensions, and
in particular we show how Eﬁcgl arises as a subalgebra of the algebra Eiolc% p associated
to the ten-dimensional IIB theory. This subalgebra corresponds to taking a combination

of generators which is different to the massless case. We then show that E}"l‘% appears as

a deformation of the massless algebra Eﬁc%l in which the commutation relations between
the E1; and the additional generators are modified. We explicitly illustrate how the de-
formed algebra is constructed in the case of massive IIA and of gauged five-dimensional

supergravity. These results prove the naturalness and power of the method.

KEYWORDS: Extended Supersymmetry, Gauge Symmetry, Space-Time Symmetries, Su-
pergravity Models

© SISSA 2009 doi:10.1088,/1126-6708/2009,/04,/051


mailto:fabio.riccioni@kcl.ac.uk
mailto:peter.west@kcl.ac.uk
http://dx.doi.org/10.1088/1126-6708/2009/04/051

Contents

1 Introduction 1
2 Gravity as a non-linear realisation 11
3 FE;; and eleven-dimensional supergravity 15
4 Scherk-Schwarz reduction of IIB supergravity from FEq; 19
5 F11 and massive ITA 31
6 F;; and gauged five-dimensional supergravity 36
7 The dual graviton 42

7.1 The dual graviton in four dimensions 43

7.2 The dual graviton in A" in four dimensions 48

7.3 The dual graviton in Egr ** in four dimensions 50
8 Conclusions 52

1 Introduction

It has been conjectured in [1] that eleven dimensional supergravity could be extended so
as to have a non-linearly realised infinite-dimensional Kac-Moody symmetry called F1q,
whose Dynkin diagram is shown in figure 1. In a non-linear realisation the algebra used to
construct it is realised as a rigid symmetry. However, in the eleven dimensional supergravity
theory all the symmetries are local. In this paper we will propose a non-linear realisation
in which F7; symmetries become local. To put this work in context it will be useful to list
some of the main developments of the F1; programme which are relevant for this paper.

Eleven dimensional supergravity itself can be formulated as a non-linear realisation
based on an algebra that includes generators with non-trivial Lorentz character [2]. To
find the precise dynamics one takes the simultaneous non-linear realisation of this algebra
with the conformal group. This naturally gives rise to both a 3-form and a 6-form fields and
the resulting field equations are first order duality relations, whose divergence reproduces
the 3-form second-order field equations of 11-dimensional supergravity provided on chooses
one constant. The eleven-dimensional gravity field describes non-linearly GL(11,R), which
is a subalgebra of this algebra. Indeed, gravity in D dimensions can be described as a
non-linear realisation of the closure of the group GL(D,R) with the conformal group [2],
as was originally shown in the four dimensional case in [3].



F1 first arose as the smallest Kac-Moody algebra which contains the algebra found in
the non-linear realisation above. This F1; algebra is infinite-dimensional, and the E1; non-
linear realisation contains an infinite number of fields with increasing number of indices.
The first few fields are the graviton, a three form, a six form and a field which has the
right spacetime indices to be interpreted as a dual graviton. This is the field content of
eleven dimensional supergravity, and keeping only the first three of these fields one finds
that the non-linear realisation of Fj; reduces to the construction discussed in the first
point and so results in the dynamics of this theory [1]. Theories in D dimensions arise
from the Fj; non-linear realisation by choosing a suitable GL(D,R) subalgebra, which
is associated with D-dimensional gravity. The Ap_; Dynkin diagram of this subalgebra,
called the gravity line, must include the node labelled 1 in the Dynkin diagram of figure 1.
In ten dimensions there are two possible ways of constructing this subalgebra, and the
corresponding non-linear realisations give rise to two theories that contain the fields of
the ITA and IIB supergravity theories and their electromagnetic duals [1, 4]. Below ten
dimensions, there is a unique choice for this subalgebra, and this corresponds to the fact
that massless maximal supergravity theories in dimensions below ten are unique. Again,
the non-linear realisation in each case describes, among an infinite set of other fields, the
fields of the corresponding supergravity and their electromagnetic duals. In each dimension,
the part of the Fq; Dynkin diagram which is not connected to the gravity line corresponds
to the internal hidden symmetry of the D dimensional theory. This not only reproduces
all the hidden symmetries found long ago in the dimensionally reduced theories, but it also
gives an eleven-dimensional origin to these symmetries.

All the maximal supergravity theories mentioned so far are massless in the sense that
no other dimensional parameter other than the Planck scale is present. In fact, even this pa-
rameter can be absorbed into the fields such that it is absent from the equations of motion.
There are however other theories that are also maximal, i.e. invariant under 32 supersym-
metries, but are massive in the sense that they possess additional dimensionful parameters.
These can be viewed as deformations of the massless maximal theories. However, unlike the
massless maximal supergravity theories they can not in general be obtained by a process of
dimensional reduction and in each dimension they have been determined by analysing the
deformations that the corresponding massless maximal supergravity admits. With the ex-
ception of the one deformation allowed for type IIA supergravity in ten dimensions, called
Roman’s theory, all the massive maximal supergravities possess a local gauge symmetry
carried by vector fields that is a subgroup of the symmetry group G of the corresponding
maximal supergravity theory, and are therefore called gauged supergravities. In general
these theories also have potentials for the scalars fields which contain the dimensionful
parameters as well as a cosmological constant. In recent years there have been a number
of systematic searches for gauged maximal supergravity theories and in particular in nine
dimensions and in dimension from seven to three all such theories have been classified [5-7].

It will be useful to recall how Fq;1 has from a very different perspective lead to the classi-
fication of gauged supergravities that agrees with these results and how the Fq1 formulation
of the gauged supergravity theories has lead to new work in these theories. The cosmological
constant of ten-dimensional Romans ITA theory [8] can be described as the dual of a 10-form



field-strength [9], and the supersymmetry algebra closes on the corresponding 9-form po-
tential [10]. The Romans theory was found to be a non-linear realisation [11] which includes
all form fields up to and including a 9-form with a corresponding set of generators. This
9-form is automatically encoded in the non-linear realisation of Eq; [12]. From the eleven
dimensional F; theory it arises as the dimensional reduction of the eleven-dimensional field
Agy . .aro,(be) i the irreducible representation of GL(11,R) with ten antisymmetric indices
ai . ..a1o and two symmetric indices b and ¢. Therefore F11 not only contains Romans ITA,
but it also provides it for the first time with an eleven-dimensional origin [13].

By studying the eleven-dimensional fields of the Ej; non-linear realisation, one can
determine all the forms, i.e. fields with completely antisymmetric indices, that arise from
dimensional reduction to any dimension [14]. In particular, in addition to all the lower rank
forms, this analysis gives all the D — 1-forms and the D-forms in D dimensions. The list of
all form fields obtained in this way for all supergravity theories is given in table 1. The D—1
and D-forms predicted by Ej; can also be derived in each dimension separately [15]. The
D — 1-forms have D-form field strengths, that are related by duality to the mass deforma-
tions of gauged maximal supergravities, and the F; analysis shows perfect agreement with
the complete classification of gauged supergravities performed in [6, 7]. Therefore E7; not
only contains all the possible massive deformations of maximal supergravities in a unified
framework, but it also provides an eleven-dimensional origin to all of them. Indeed, while
some gauged supergravities were known to be obtainable using dimensional reduction of
ten or eleven dimensional supergravities, this was not generically the case. As a result the
gauged supergravities were outside the framework of M-theory as it is usually understood.

One striking feature of the £, formulation of massless or massive supergravity theories
is that it includes fields together with all their dual fields. The presence of the dual forms
is essential to formulate the field equations as duality relations. Some dual forms have been
introduced in the past in an ad-hoc way beginning with [16], but it is only with Ej; that
they have arisen from an underlying principle. Indeed, the forms of table 1 were proposed
in [14, 15] to play a crucial role in gauged supergravities, the D — 1 forms classifying the
gauged supergravities and the lower forms providing a chain of form fields that occur in
the duality relations. This is compatible with the structure of the gauge algebra arising in
gauged supergravities, in which one is forced to introduce a p + 1 form to close the gauge
algebra of a p form, thus determining a hierarchy of forms [17]. For the cases in which this
latter method has been subsequently used to compute the hierarchy of forms, the results
are precisely in agreement with Fjy; [18], and indeed the presence of the forms given in
table 1 has now been systematically adopted by those studying gauged supergravities.

All in all there is considerable evidence for an Fy; symmetry in the low energy limit
of what is often called M theory. The above evidence concerns the adjoint representation
of Ey1, or the part of the non-linear realisation that involves the fields associated with
the Fq1 generators. However, there is also the question of how space-time is encoded in
the theory. In the non-linear realisations mentioned above the generator of space-time
translations P, was introduced by hand in order to encode the coordinates of space-time.
From the beginning it was understood that this was an ad-hoc step that did not respect the
Eqq symmetry. It was subsequently proposed [19] that one could include an Fq; multiplet



D G 1-forms | 2-forms | 3-forms | 4-forms | 5-forms | 6-forms | 7-forms | 8-forms | 9-forms | 10-forms
+ 1
10A R 1 1 1 1 1 1 1 1 1
4
10B SL(2,R) 2 1 2 3 >
2 2 3 3 4
9 SL(2,R) x Rt 2 1 1 2 2
1 1 1 2 2
(15,1)
_ = 8,1) (6,2) (3,3)
8 | SLB,R)xSL(2,R) | (3,2 3,1 1,2 5,1 3,2) | ( 8,
@rxsLe® | G2 | 6y | a2 | Gy |6y | U gD | &Y
(38,1)
40 70
7 SL(5,R) 10 5 5 10 24 45
i5 5
320
6 SO(5,5) 16 10 16 45 144 126
10
— 1728
5 E6(+G) 27 27 78 351 o7
8645
4 E7(+7) 56 133 912 133
3875 147250
3 Bs(+8) 248 3875
1 248

Table 1. Table giving the representations of the symmetry group G of all the forms of maximal
supergravities in any dimension [14]. The 3-forms in three dimensions were determined in [15].

of generators which had as its lowest component the generator of space-time translations.
This is just the fundamental representation of Fq; associated with the node labelled 1 in
the Dynkin diagram of figure 1 and it is denoted by [. A method of constructing the gauged
supergravities was given in reference [20] using £ and the [ multiplet of generators. Indeed
as an example all the gauged supergravity generators in five dimensions were derived from
this viewpoint. This reference also contains a review of the evidence for the [ multiplet as
the multiplet of brane charges and a table of its low level content in dimensions three and
above. In this context there has been a recent interesting paper [21] which keeps the scalar
charges in the [ multiplet for the seven-dimensional maximal supergravity and still finds

diffeomorphism invariance in seven dimensions.

What was not clear from this method was how the global F1; symmetries would become
local and this is the subject of this paper. In the context of purely gravity this was achieved
long ago in reference [3] by taking the simultaneous non-linear realisation of IGL(4,R) with
the conformal group in four dimensions. As mentioned above, if one took the non-linear
realisation of E1; at low levels, that is to include the six form generator, took only the
Lorentz group as the local subgroup and the simultaneous non-linear realisation with the
conformal group, then the dynamics predicted by the non-linear realisation is just the
maximal supergravity theory in eleven dimensions. This can be seen by realising that the
low level Fy; algebra [1] is just that used in reference [2] to construct the eleven dimensional



supergravity theory as a non-linear realisation once one includes the conformal group. The
effect of latter is that it makes not only the space-time translations a local symmetry but
also turns the shifts associated with form fields into gauge transformations [2]. However,
it is not clear how to combine the conformal group with the algebra formed from FE;; and
the [ multiplet. In particular how to extend the action of the conformal group on the usual
coordinates of space-time to include the other coordinates encoded in the [ multiplet.

In this paper we will not use the conformal group, but rather add the generators that
the closure of this algebra with F7; would generate. We will also not use the generators
from the [ multiplet, but only the space-time translations P,. The prototype example
of this mechanism was given long ago for the case of Yang-Mills theory [22]. Essentially
one takes an algebra that contains the generators P, and the Yang Mills generators Q<
as well as the generators R*“ for which the gauge fields are Goldstone bosons and an
infinite number of generators K %% symmetric in their spacetime indices, which do not
commute with P, and whose role is to make the rigid symmetry generated by R*“ local.
We will review this construction later on in this introduction.

We will first show the analogous mechanism for pure gravity. In particular, we will
show how to construct Einstein’s theory of gravity using a non-linear realisation which takes
as its underlying algebra one that consists of IGL(D,R) and an infinite set of additional
generators whose effect will to promote the rigid IGL(D,R) to be local. The generators
P, lead in the non-linear realisation to the coordinates of space-time while the Goldstone
boson for GL(D,R) is the vierbein which is subject to local Lorentz transformations. The
infinite number of additional generators lead to local translations, that is general coordinate
transformations, but to no new fields in the final theory as their Goldstone fields are solved
in terms of the graviton field using a set of invariant constraints placed on the Cartan forms.
This is an example of what has been called the inverse Higgs effect [23]. The unique theory
resulting from this non-linear realisation with only two space-time derivatives is Einstein’s
theory up to a possible cosmological term. In this case one can see that the additional
generators we have added are just those found by taking the closure of IGL(D,R) with
the conformal group.

We will then generalise this procedure to E1; at low levels. We take the algebra,
called Eﬁcal consisting of non-negative level E71; generators, the generators P, and an
infinite number of additional generators. While the latter lead in the final result to no
new Goldstone fields they do result in all the low level Fy; symmetries becoming local,
thus we find general coordinate transformations and gauge transformations for all the form
fields. For the eleven dimensional theory, space-time arises in the group element due to the
P, generators, however, for lower dimensional theories we will take space-time to be not
only the translation operator P, for that dimension but also certain other Lorentz scalar
charges that include the translation operators for the dimensionally reduced generators,
in effect we take only the Lorentz scalar part of the [ multiplet. As we add just the
spacetime translations rather than the whole [ multiplet we will take P, to commute with
the non-negative level generators of Fq1. The price for proceeding in this way is that we
are working with only the non-negative level generators of Fq; and we have essentially
thrown out the negative level generators. We show that the non-linear realisation of the



algebra E13 describes at low levels in eleven dimensions the 3-form and the 6-form of

the eleven dimensional supergravity theory with all their gauge symmetries. This can
be thought of as equivalent to taking the non-linear realisation of Fq1 at low levels and
taking the simultaneous non-linear realisation with the conformal group as was discussed
earlier [1, 2], but here the procedure is more transparent.

We then consider the formulation of lower dimensional maximal gauged supergravity
theories from the viewpoint of the enlarged algebra Eﬁc%l The D refers to the fact that
although we take the same non-negative level Fy; generators and generators P,, the infinite
number of additional generators we take vary from dimension to dimension. We first
consider as a toy model the Scherk-Schwarz dimensional reduction of the IIB supergravity
theory from this viewpoint. We begin with an algebra consisting of Eﬁf% p and take the
ten dimensional space-time to arise from an operator Q which is constructed from Q = P,
and part of the SL(2,R) symmetry of the theory. This means that the 10th direction of
space-time is twisted to contain a part in the SL(2,R) coset symmetry of the theory. This
non-linear realisation gives a nine dimensional gauged supergravity. We observe that not
all of the algebra Eﬁc% g is essential for the construction of the gauged supergravity in nine
dimensions, but only an algebra which we call E%‘fgl which is the subalgebra of Eiolci% p that
commutes with Q. Its generators are non-trivial combinations of Fj; generators and the

have non-trivial commutation

additional generators and in general the generators of Eﬁfgl

relations with nine dimensional space-time translations. Although the subalgebra Eﬁfgl

appears to be a deformation of the original F71 algebra and the space-time translations we
have not changed the original commutators, but rather the new algebra arises due to the
presence of the additional generators which are added to the E71 generators.

However, we then show that one can find the algebra Eﬁﬁcgl without carrying out all
the above steps. Given the non-trivial relation between the lowest non-trivial positive level

generator of E13%! and the nine dimensional space-time translations one can derive the

rest of the algebra Eﬂcgl simply using Jacobi identities. This algebra determines uniquely
all the field strengths of the theory, and thus one finds a very quick way of deriving the
gauged supergravity theory.

This picture applies to all gauged supergravity theories, as one can easily find the alge-
bra Ei"l‘% without using its derivation from Eﬁcal and this provides a very efficient method
of constructing all gauged supergravities. We illustrate how this works by constructing the
massive IIA theory as well as all the gauged maximal supergravities in five dimensions.

Finally, we consider how this construction generalises to the fields with mixed symme-
try, i.e. not completely antisymmetric, of F1; and in general of any non-linear realisation of
a very-extended Kac-Moody algebra. We will consider as a prototype of such fields the dual
graviton in four dimensions, which is a field A, symmetric in its two spacetime indices.
We will show that if one tries to promote the global shift symmetry of the dual graviton
field to a gauge symmetry, one finds that this is not compatible with the E1; algebra. The
solution of this problem is that actually Fqq forces to include additional generators, whose
role is to enlarge the gauge symmetry of the dual graviton so that one can gauge away the
field completely. We show this first for the simpler case of the non-linear realisation of the
A+

Kac-Moody algebra in four dimensions. We then consider the case of Eq; in four



dimensions. For simplicity in this case we neglect the gravity generators, and we still find
that even considering consistency conditions involving only the generators associated to the
form fields and those associated to the dual graviton, one is forced to include additional
generators for the dual graviton that generate a local symmetry that gauges away the dual
graviton completely. We claim that this picture generalises to all mixed symmetry fields in
any dimension. It is important to stress that the dynamics is compatible with this result.
Indeed, while the field strengths of the antisymmetric fields are first order in derivatives,
and therefore one needs fields and dual fields to construct duality relations which are first
order equations for these fields, the gravity Riemann tensor is at second order in derivatives
and thus there is no need of a dual field to construct its equation of motion.

It will be helpful to recall some facts about non-linear realisations. A non-linear
realisation of a group G with respect to a subgroup H is by definition a theory invariant

under the two separate transformations

9(x) = gog(x), g(x) — g(z)h(x) (1.1)

where g € G, go € G while h € H. The dependence on the generic symbol x signifies which
group elements dependence on the coordinates of the space-time. For the case of an internal
symmetry the space-time dependence is incorporated by hand. However, in this paper
space-time will arise naturally in that its associated generators are part of the Lie algebra
of the group G. Indeed, a part of the group element is just space-time viewed as a coset.
We note that the h transformations depend on the space-time coordinates so can be said to
be local, unlike the rigid gy transformations. Working with the most general group element
g we must then find a theory that is invariant under both gy and local h transformations.

It is often more transparent to use the h transformations to choose g(x) to be of a
particular form, that is choose coset representatives. If one does this then when making
a rigid go transformation one finds a group element gog which is in general not one of
the chosen coset representatives. To rectify this one must make a compensating h. that
depends on gg and the original coset representative g(x). That is g — ¢’ = gogh. ' where
both g and ¢’ are chosen coset representatives.

The problem of finding the invariant dynamics is most often solved by using the Car-
tan forms V = g~ 'dg. This is obviously invariant under rigid gy transformations and
transforms as

V — h™'Vh 4+ h~tdh (1.2)

under local h transformations. We note that ¢~ 'dg = dx - g~'0g is invariant but g~'dg
is not as the coordinates of space-time x transform under gg transformations. To be more
explicit we consider a group that contains the generators Ly and we denote the remain-
ing generators by the generic symbol T%. We will assume that the generators Ly from a
representation of the T*’s. The general group element is of the form

g=evled@ T (1.3)

We recognise x as the coordinates and ¢ as the fields. The local subgroup can be used to
set some of the fields ¢ to zero. The discussion below holds if one makes this choice or



work with the general group element. The Cartan forms can be written as
V=g 'dg = da""Ey™ Ly + da" G . T*. (1.4)

Since V is invariant under ¢ — gog it follows that each of the coefficients of the above
generators is invariant, that is dz'"EpY and dxHGIL* are invariant. However, dz'l does
transform under gy and so Eg and G, are not invariant. To find quantities that only
transform under the local subalgebra we can rewrite V' as

V=g 'dg = da"En™(Ly + Gn . T"), (1.5)

where we recognise that Gy . = (E_l)NHGH,*. It follows that Gy are inert under gg
transformations and just transform under local transformations. As such they are useful
quantities with which to construct the dynamics as one must now only solve the problem
of finding objects which are invariant under the local symmetry. We may think of G'n« as
covariant derivatives of the fields ¢.

There is one subtle point that is sometimes worth remembering if one chooses coset
representatives. Although G is naively invariant under gg transformations it is not in-
variant under the required compensating h. transformation under which Gy . transforms
as in eq. (1.2) with h replaced by h.'. However, having found a set of dynamics that
is invariant under h transformations it is of course also invariant under the compensat-
ing transformations.

Realising Yang-Mills theory as a non-linear realisation was first given by Ivanov and
Ogievetsky [22] and we now summarise this approach as it will serve as a prototype model
for the later sections of this paper. We begin with the algebra

Py, Ju, Q, R, K@oe gueee o goeae (1.6)

which will generate the group G of the non-linear realisation. The generators P, and J; are
those of the Poincare group while the Q%’s will become identified with those of the gauge
group. The generator R*“ is the generator associated to the gauge vector in the non-linear
realisation, while the generators K'~%»% are symmetric in the spacetime indices and will
be responsible for the symmetry of the vectors to be promoted to a gauge symmetry. The
Q% generators obey the commutators

Q% Q° = gf**,Q", (1.7)
where ¢ is the coupling constant. The remaining commutation relations are given by
[Kal"'a"’a,Pb] _ nééalKag...an),a, [Kal...an,a,Kbl...bmﬁ] _ gfaﬁpyKal---anblmb'mv“/‘ (1.8)

Although the K%%% generators have at least two indices, the commutation relations
of Q% and R*® with all the generators are encoded in the equation above making the
identification K“%* = R*% and K* = Q®. The Lorentz generators J,; have the usual
commutators with the above generators. The local sub-group H is generated by the Q¢
and the J,;. As a result we may choose the group element to be of the form

g= A 6<I>a1a2a3,a(x)K‘ll‘l2a3’a6¢a1a2’a(x)K“la%aeAa,a(x)Ra’a. (19)



Computing the Cartan forms we find that
g—ldg = da®[P, + Ga,b,aRb7a + Ga,banbc,a _ Aa@Qa .

1
= dz"” |:Pa + (aaAb,a - ggAa,BAb,’yfﬁfya - 2(I>ab,a)Rb7a
1
+ <8a(1>bc,a - 692Aa,6Ab,6Ac;nyB5f&ya - QQq)ab,BAc,’yfﬁ,ya

1
+§gaaAbﬂAcm/fﬁ,ya - 3(I)abc,a> Kbqa - Aa,aQa + (1'10)

where the dots denote K generators with more than two spacetime indices. Only the
last term in eq. (1.10) is in the local sub-algebra and as such we can identify A,. as
the connection, i.e. the gauge field, for the gauge group generated by Q%. Each of the
other terms separately transform covariantly under the local subgroup and so we can place
constraints on them and still preserve all the symmetries. In particular we can set

G(a,b),a =0, (1.11)

which implies
2(IDab,c\z - 8(aAb),ou (112)

and also

G(a,bc)a =0, (113)

which implies

1

3q)abc,a - 8(aq)bc),a - 2g(ID(ab,B‘Ac),fyfﬁfyoz + §ga(aAb,ﬁAc),'yfﬁfyoz- (114)

Indeed one can solve in this way for all the ® fields leaving only with the field A, .
The elimination of some fields using constraints on the Cartan forms that preserve the
symmetries is sometimes called the inverse Higgs mechanism [23].

Substituting the above solutions for the ® fields into the Cartan forms one finds ex-
pressions that contain A, , alone which are given by

2
g 'dg = da®| P, + Fup o R™™ + ngFawac’o‘ o= Aa Q] (1.15)

where Fup o = 0y Ap)a — % 9A43Ab 87, and D, is the expected covariant derivative. We
recognise this as the Yang-Mills field strength and the higher Cartan form as its covariant
derivatives. The object invariant under the symmetries of the non-linear realisation, which
is lowest order in derivatives, is just the usual Yang-Mills action.

In fact only the lowest order Cartan form G, o was evaluated in reference [22], but it
is interesting to realise that the Cartan forms do contain all the gauge covariant derivatives
of the field strength.

One way to arrive at the above set of generators of eq. (1.6) is to write the Yang-Mills
gauge parameter as a Taylor expansion

Aa(2) = ao + a0t + agpar®al + - - (1.16)



where the parameters a do not depend on space-time. The usual Yang-Mills transformation
can then be interpreted as a an infinite set of rigid transformations whose generators are
just those of eq. (1.6) with the commutation relations of egs. (1.7) and (1.8). Indeed
carrying rigid transformations e and e*® on the group element of eq. (1.9) one finds the
same result that a Yang-Mills transformation would produce if the gauge parameter were
expanded as in eq. (1.16).

In a tribute to Ogievetsky’s important contributions to the theory of non-linear re-
alisations we will call the additional generators K %% Qgievetsky generators (Og for
short) and similarly for their associated fields. They will be used throughout this paper
and they are the generators that make the original symmetry, in this case that of the R*%,
local. We can systematically assign a grade to the generators, in particular Q% and P,
have grade -1, R*»* has grade 0 and K% % +1% have grade n. The coupling constant g has
grade -1. We denote the Og generator of grade n as Og n. The algebra of eq. (1.8) can
then schematically be written as

[G,0gn]=¢g0gn [Ogn,P,]=0g(n—1) [Ogn,0gm|=g0g (m+n+1). (1.17)

It will be instructive to consider the dimensional reduction of the above non-linear
realisation in D dimensions on a circle with coordinate y. For simplicity we will just
consider the abelian case here, and we will therefore drop the index «. After dimensional
reduction, the vector field becomes A,, A, = @, while the Og 1 field becomes D4, P oy, Pok
and similarly for the higher grade Og fields. Here x denotes the yth, i.e. circle, components
and a,b=0,...,D—2. Neglecting for simplicity the contribution along the Og 1 generator,
the Cartan form of eq. (1.10) becomes

g tdg = dz®P, + dyP, + dz* (9, Ay — 2ha) RY + dz® (0 — 20,4, ) R*
+dy(0sAg — 2Pyq) R + dy(Osp — 2Py )R* — dz®A,Q — dyeQ.  (1.18)

We now take all the fields to be independent of y. Imposing that the Cartan form in the dy
direction vanishes, apart from the term in the local subalgebra, we find that ®,, = ®,, = 0.
This generalises to all the Og fields of any grade having at least one index in the internal
direction. Solving for the remaining Cartan forms as above one finds that one is then
left with the fields A, and ¢ with the expected dynamics. The net effect of these steps
is that from the original set of generators in the higher dimension we take only those
that commute with @Q, the generator of y transformations, and construct the non-linear
realisation from the sub-algebra formed by these generators. Since the ® fields are related
to the derivatives of the usual fields it is to be expected that some of the Ogievetsky fields
will vanish in dimensional reduction on a circle.

The non-linear realisation of the Yang-Mills theory will be the prototype example of
all the analysis that we will perform throughout this paper. The paper is organised as
follows. Section 2 discusses the non-linear realisation of gravity, while section 3 is devoted
to the analysis of the 3-form and the 6-form of eleven-dimensional supergravity from FE1;.
In section 4 we show how to derive from FE7; the Scherk-Schwarz reduction of the IIB theory
to nine dimensions. Sections 5 and 6 are devoted to the F;; derivation of the massive ITA
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theory of Romans and of gauged five-dimensional maximal supergravities respectively. In
section 7 we discuss the dual graviton in four dimensions, considering first the algebra of
the dual graviton alone, and then the cases of gravity and dual gravity in A;FJFJF in four
dimensions and of dual graviton coupled to vectors in Fy; in four dimensions. Finally,

section 8 contains the conclusions.

2 Gravity as a non-linear realisation

It was shown long ago by Borisov and Ogievetsky that four-dimensional gravity could be
formulated as a non-linear realisation [3]. These authors showed that gravity in four dimen-
sions could be formulated as the non-linear realisation of IGL(4,R) with local subgroup
SO(4) if taken together with the simultaneous realisation of the four dimensional conformal
group SO(2,4) with local subgroup SO(4). The first non-linear realisation possesses coset
representatives ¢ = e® e that contain the coordinates of spacetime z* as coefficients
of the spacetime translation generator P, and the field h,’, which was taken to depend on
xH, and are associated with the generators K%, of GL(4,R). The non-linear realisation of
the conformal group has coset representatives g = e%Fe?Pe®eK that are labelled by the
coordinates of space-time z* and the fields ¢ and ¢, associated with the dilation generator
D and special conformal generator K. The field ¢, can be eliminated using the inverse
Higgs mechanism, that is by setting constraints on the Cartan forms that preserve all
the symmetries. The simultaneous non-linear realisation of the two groups is achieved by
constructing the dynamics from only the Cartan forms of IGL(4,R) which also transform
covariantly under the conformal group. The transformations of the two groups are linked
in that the dilation generator D and the trace of the GL(4,R) generators K%, generate the
same scaling of the coordinates x# and so their corresponding Goldstone fields ¢ and h%,
must be identified with an appropriate proportionality constant. Although a little com-
plicated the result of this procedure is Einstein’s theory if one restricts one’s attention to
terms that are second order in spacetime derivatives. Taking only the non-linear realisation
of IGL(4,R) one can also find Einstein’s theory from the Cartan forms provided one fixes
a number of coefficients in a way not determined by the symmetries of IGL(4,R) alone.
The results can be generalised to D dimensions [2]. However, this latter reference did not
use the Lorentz group to make a particular choice of coset representative and introduces a
vierbein rather than a metric.

The derivation of gravity as a non-linear realisation was anticipated by an earlier paper
of Ogievetsky’s [24] that showed that the closure of IGL(4,R) and the conformal group as
realised on the coordinates of space-time z* in the well known way is equivalent to just con-
sidering all infinitesimal general coordinates transformations z# — z# 4 f#(x) where f*(x)
is an arbitrary function of x#. Thus the closure of the two groups is an infinite dimensional
group that is just the group of general coordinate transformations. We note that the start-
ing point i.e. the well known transformations on x* are just those found by taking space-
time to be a coset or equivalently a non-linear realisation in which the fields are absent.

As such an equivalent more straightforward approach would be take the non-linear
realisation of the infinite group which is the closure of the two groups, that is the algebra
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of general coordinate transformations. This calculation is the subject of this section. Such
an approach was adopted by Pashnev [25], however, although we will begin from the same
starting point our method will depart in some important ways, some of which are discussed
in [26, 27], that are explained below.

Let us begin with the infinite dimensional algebra that contains the generators

Py, K% K%, ... K%+, . (2.1)
where K9-n = [(a1--an) These generators obey the relations
(K By) = (n — 1)05" Ko, (2.2)
and

[o-an, KKPbn ] — (4 m — 1) %5£b1|Ka1...an|b2...bm)d B %5c(1a1[(a2...an)b1...bmc (2.3)
The generators P,, K%, are those of IGL(D,R) while the special conformal transformations
are contained in K%.. Indeed the entire algebra can be generated by P,, K%, and K.
We note that one can assign grade to the generators; K%' +1, has grade n, P, has grade
—1 and K%, has grade zero. This notion of grade is preserved by the above commutation
relations. In terms of our previous notation we call the additional generators Ogievetsky,
or Og, generators. In particular, K% %+1_is an Og n generator. The commutators of
egs. (2.2) and (2.3) can thus schematically be written as

[Og n,0g m| = Og (n +m), (2.4)

which includes all possible commutators provided that we denote with Og (-1) the momen-
tum operator and with Og 0 the GL(D,R) generators.

We now carry out the non-linear realisation of the group based on the algebra of
egs. (2.2) and (2.3) taking as our local subgroup the Lorentz group which has the generators
Jab = Ma)e| - As such we may choose our group element, or coset representative to be
given by

PPy Pl @Ry, (K12, ha (0K P (2.5)

g=c 192 e 94 9h-

In fact this is the most general group element as we have not used the Lorentz group to
make any choice. The Cartan forms are given by

g~ 'dg = g, "9, dz" Pagsgn + 95, (9, " dgs)gn + g, dgn
= dat (e, " Po + Gup K + GLap® K™ + -+ ). (2.6)

A straightforward calculation gives

ey’ = (eh)ua7 Gup’ = (e_laue)bc — @Mp“(e_l)b"e,@c, (2.7)
1 _ _
G’ = (0,9, —20), . — ;(p%T + 5@;,,@27)(6 DaPle ™ Hyfens, . .. (2.8)
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In deriving these expressions no conversion of indices on the objects has taken place but
the indices have been relabelled with curved or flat indices suitable for their latter inter-
pretation. The factors of e come from the final factor of g, in the group element. Indeed,
carrying out a local Lorentz transformation the Cartan forms transform as in eq. (1.2) and
one sees that the e, are rotated on their a index by a local Lorentz rotation allowing us
to interpreted e,® as the vierbein.

The part of the Cartan form involving the local subalgebra is contained in the second
term of eq. (2.7) which we may write as

Gu,abKab _ G“,(ab)K(ab) + wuabJab (29)

where
wia” = (€71 0ue) " — @ (e o en (2.10)

We note that although the algebra of egs. (2.2) and (2.3) is formulated in terms of the gen-
erators of GL(D,R) and other generators that are representations of GL(D,R) the choice
of the local sub-algebra to be SO(1, D — 1) allows us to introduce the tangent space metric
Nap With which we may raise and lower indices to achieve the above (anti-)symmetrisations.

Thus far we agree with the paper of Pashnev [25]. However, in this reference it was
proposed that the Maurer Cartan equations dV + V AV = 0, which are identities, would
place constraints on the fields. Imposing inverse Higgs conditions to find the Christoffel
symbol in terms of the metric was correctly carried out in [26, 27].

From now on we follow a different path. The dynamics are constructed in the way
explained in the introduction with the Cartan forms transforming as in eq. (1.2). Recalling
our discussion in the introduction we conclude that G, = (eil)a“GW, where x stands for
any form except those lying in the Poincare algebra, transform under the Lorentz group as
its indices suggest. As such we can place constraints on these Cartan forms and preserve
all the symmetries, that is use the inverse Higgs mechanism. Indeed, we can set

Goa? = (€7 Gya? = (7)€ 00) 0" — @ (e e =0, (211)

The effect of this is to solve for ®,," = ®(,,)" in terms of the e,*. The result is [26]

K K —
¢)u‘l/ — Fﬂl/ =

N |

9" (Ovgrp + OuGrv — Orgpuw)- (2.12)

We define g, = e,ﬂeybnab and recognise I',,” as the usual Christoffel connection of general
relativity. A quick check of this result is to verify that eq. (2.11) implies that 2¢),®,," =
Ougxy- Substituting into eq. (2.10) we find that

_ . 1
wﬂab = (e 1aue)[ab} - Pup“(e 1)[apef€b] = §eaT(aueTb - aTeMb)
1 1
_§nbcecr(a“67_a _ aTe“a) _ §€a7—’l’}bc€ca(a¢€gd _ 8067d)6ﬂd, (213)

which is the well known formula for the spin connection.
At the next level we can covariantly set

G(d,ab)c =0, (2.14)
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where Gg ¢ = ed“Gz,ab = ed“eapeb"‘GMp,f‘e)\c. This solves for the field <I>Wp)‘ = D@ in

terms of <I>W>‘ by imposing symmetrisation in the obvious way. Substituting the solution

))\

into the part of this Cartan form that remains we find that
2GH7PH>\ = RM)AF» = 8urpﬂ>\ - aprwf)\ + FMAFPHT - FPT)TWT’ (2.15)

which we recognise as the well known expression of the Riemann tensor.

At higher orders one imposes covariant constraints on the Cartan forms so as to solve
for all the Og fields @ to leave only the field h,’ or equivalently e,® = (e*),%. Substituting
the solutions back into the Cartan forms we find that

1
g 'dg = da* <eﬂaPa + wﬂabJab + iRﬂpAReapeb“ec)‘Kgb + ... >, (2.16)

where 4 ... denotes terms which contain covariant derivatives of the Riemann tensor.

The Og generators play the role of turning GL(D,R) into a local symmetry and one
can verify that carrying out a general rigid group transformation g — gog on the group
element of eq. (2.5) we recover the usual general coordinate transformations of general
relativity on the vierbein e,“.

We will now summarise the above discussion. We started with the group GL(D,R),
generators K%, and the translations P, to which we assigned grades 0 and —1 respectively.
To these we added an infinite number of Ogievetsky generators K%' -%n+! . each with grade
n. These obey the Lie algebra of egs. (2.2) and (2.3). We then placed covariant constraints
on the Cartan forms solving for all the Ogievetsky fields whereupon the remaining parts of
the Cartan form contain the spin connection at lowest grade and then the Riemann tensor
and its covariant derivatives. The introduction of the Ogievetsky generators leads in the
non-linear realisation to general coordinate invariance. As such we find Einstein’s theory
in a completely systematic way from the viewpoint of non-linear realisations.

We now consider the dimensional reduction of this non-linear realisation that is equiv-
alent to the usual dimensional reduction on a circle. Let us denote by y the coordinate of
the circle, x the components in this direction and let () = P,. Dimensionally reducing the
Cartan forms of eq. (2.6) we find

g 'dg = dat (e, Py + €,"Q + Gy Kl + Gl K* o+ Gy Kl + G K
+Gap K+ 2G K™+ )
+dy(es Pu+ .7Q + Gop° KPo + GolCK¥ o + Gy K 4+ G K
+Gaab K+ 2G b K™+ G " K + -+ ). (2.17)

The coefficients G can be read off from egs. (2.7) and (2.8). We now take all the fields not to
depend on y and imposing the inverse Higgs constraint on all G  where o is any index, that
is set the part of the Cartan form in the dy direction to zero. We find that all the Ogievetsky
fields that contain a lower % index vanish. Thus all the Ogievetsky generators that do not
commute with @) disappear from the group element and so the Cartan form. The only
Ogievetsky fields left are ®,,° and ®7,. The later field occurs in the Cartan form in the term

dx“Gmb*Kb* = ((e710ue)™ — @, (e e KO, (2.18)
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Figure 1. The Eg"H', or Fy1, Dynkin diagram.

In the dimensionally reduced theory we set the coefficient of dz# lying in K (ab) of the Cartan
form to zero and solve for ®,;,° which just plays the role of the Ogievetsky field of gravity in
the lower dimension. Setting the part of the Cartan form of eq. (2.18) (e71) ("G, p* = 0
we solve for @7, in terms of e,*. The latter field is just the vector field that arises in this
dimensional reduction and so this step is as we found for the case of the vector studied
earlier. In the dimensionally reduced theory we have as our local symmetry only the Local
Lorentz group in the lower dimension. Substituting for ®,,¢ in the part of the Cartan form

in this part of the algebra we find the spin connection for the lower dimensional theory.
*

up) > but this we recognise as just

There remains, however, the term containing (6_1)[a“G
the field strength for the vector.

3 FE;; and eleven-dimensional supergravity

In this section we want to repeat the analysis of the previous section for the non-linear
realisation based on the very-extended Kac-Moody algebra FE71, whose Dynkin diagram is
shown in figure 1.

The decomposition of the adjoint representation of 1, with respect to the subalgebra
GL(11,R) corresponding to nodes from 1 to 10 in the diagram leads to the generators
K% of GL(11,R) and R™® and R, in the completely antisymmetric representations of
GL(11,R), together with an infinite set of generators which can be obtained by multiple
commutators of the generators R®° and Rge subject to the Serre relations. Defining the
level [ as the number of times the generator R%° occurs in such multiple commutators,
one obtains for instance at level 2 the generator R* % with completely antisymmetric
indices and at level 3 the generator R%?~% antisymmetric in the indices b; . .. bg and with
Rla:bi-bs] — 0 The generator R itself has level 1, while the generator Ry has level -1
and correspondingly multiple commutators of this generator have negative level [1].

In the last section we have shown how spacetime arises in the nonlinear realisation
based on the algebra GL(D,R) in D dimensions. This corresponds to introducing the
momentum operator P,, together with an infinite set of Og n operators K% %n+1,  In
F11 the momentum operator arises as the lowest component of the E7i; representation
corresponding to Ay = 1, where A; is the Dynkin index associated to node 1 in figure 1,
and called the [ multiplet [19]. In this paper we will consider a different approach, that is we
will consider the momentum operator as commuting with all the positive level generators.
This approach has the advantage that one can naturally introduce the Og operators for
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each positive level generator of 71, although it has the disadvantage of breaking Fq1 to
Borel Ejp, or more precisely to the subgroup of Fy; generated by GL(11,R) and all the
positive level generators. The corresponding local subalgebra is SO(11), or SO(10,1) in
Minkowski signature. We denote with E!3 the algebra generated by the momentum
operator, the non-negative level F1; operators and the Og operators.

In the non-linear realisation, the fields associated to R*¢ and R % correspond to
the 3-form and its dual 6-form of eleven dimensional supergravity. The field associated to
the generator R*?1--% has the right indices to be associated to the dual graviton, and we
will call it the dual graviton for short. In this section we will concentrate on the 3-form
and 6-form, while section 7 will be devoted to the dual graviton, although not in eleven
dimensions but in the simpler four dimensional case.

Following the analysis of the previous section, we take Og operators for the 3-form and
the 6-form in the representations obtained adding symmetrised indices to the set of 3 or
6 antisymmetric indices respectively. The Young tableaux corresponding to the first three
Og operators is shown in figure 2. In particular, the Og 1 operators K7 b1b2bs and K ! ob.-bo
belong to the GL(11,R) representations defined by

b1b2b b1b2b
Kil,blb2b3 _ Kf’[ 1b2b3] K{a’ 1b2b3] 0

Kf,bl...bs _ Kfy[bl---bﬁ} K{a’bl"'bd =0 (31)

and we take their commutation relation with P, to be

[Kil,blbgbg Pc] _ 5aRb1b2b3 _ 5aRb1b2b3}
b C

[Kf,bl...bs,Pc] — 6?Rb1mb6 -4

(¢}

aRbl...bG}. (32)

(¢}

The Og 2 operator for the 3-form K3 bie1e2¢s pelongs to the representation defined by

b 7b b 7b7 k) b7
Kg’ sc1cacs _ Kéa ),c1c2¢3 _ Kg [c1cacs] Kg[ cicacs) —0 (33)
and we take its commutation relation with P, to be
[Kg,b,clcgt:3’ Pd] _ 53[{?,010203 + 53Kf’616263 + %651 Kla,b\czcﬂ + 2651 Klb,a‘CQCg]’ (34)

and similarly for the Og 2 operator for the 6-form Kg’b’cl”'ce. Proceeding this way one

can write down the representation and the commutation relation with P, of the next Og

operators. Denoting with n the grade of the Og operators, i.e. the Og 1 operators have

grade 1, then the commutator of an Og n operator with P, gives an Og (n — 1) operator.
The 6-form generator occurs in the commutator

[Ralaga;a’ RG4G5GG] — 2R‘11---a6. (3.5)

Using this relation and eq. (3.2) one can then determine the commutation relations between
the Og 1 generators and R requiring that the Jacobi identities are satisfied. This gives

b1b2b
[thblebs’ Rclcgcg] _ 2Kf,blb2b3010203 . 2K1[a’ 1b2 3]016263. (3.6)
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Eyy Og1 Og 2 Og 3

Roazaz. | | Kil,bl---ba: | Kg,b701---03: | | Kg,b,C,dl...dg: | | |

Rat-as. [ ] Kil,by--b@': | ngbﬁl---as: [] ngbvcvdl---dﬁ: [ 1]

Figure 2. The Young tableaux of the Og generators associated to the eleven-dimensional F1;
generators R and R%' 9%

Neglecting higher level generators and the gravity contribution, as well as higher Og gen-
erators, we can thus write down the group element as

ex'Peq)OgK?geAalWaGRal“‘aG eAa14.4a3Ra1“‘a3

9= ) (37)

where we have denoted with ®o, the Og 1 fields for both the 3-form and the 6-form, and
similarly K 10 & denotes collectively the Og 1 operators for the 3-form and the 6-form. One
can then compute the Maurer Cartan form, which is

g_laug - PM + (8MAa1a2a3 - (I)M7a1a2a3)Rala2a3 + (8MAG1---QG + 8MAa1a2a3Aa4a5a6
_(I),u,al...a(; - 2q),u,a1a2a3Aa4a5a5)Ralma6 + - (38)

The inverse Higgs mechanism allows one to express the Og 1 fields in terms of the 3-form
and the 6-form in such a way that only the completely antisymmetric expressions are left
in (3.8). This corresponds to

P arazas = OpAarasay — 8[,uAa1a2a3}
¢/,,L,a1...a6 = 8uAa1...a5 - a[uAal...aG] - 8uAa1a2a3Aa4a5a6
_8[uAa1a2a3Aa4a5a6] + Qa[uAalagag}Aa4a5a67 (3'9)

where antisymmetry in the a indices is understood. These relations are all invariant with
respect to the local subalgebra. Plugging this into the Maurer-Cartan form one gets

g—laug = PH + Fuala2a3Ra1a2a3 + Fua1~~~a6Ra1ma6 +oeey (3'10)
where

Fa1a2a3a4 = a[alAa2a3a4}

Fal...aw = a[alAag...(m] + F[al...a4A (311)

asagar]

are the field strengths of the 3-form and its dual 6-form of 11-dimensional supergravity.
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The Maurer-Cartan form is invariant under transformations in the Borel subalgebra,
and we use this to derive transformations for the fields. In the particular case discussed in
this section, where we have restricted the group element to be as in eq. (3.7), we consider

the action of

,b1bob ,b1...b,
go = eaalaQaSRalaQaS eaa1.4.a6Ra1ma6 eba,blebSKf 172 36ba,b1mb6Kf 176 (312)
from the left. Taking the parameters a and b to be infinitesimal, we derive the transfor-
mations of the fields to be

b
5Aa1a2a3 = Qgqasa3 +x bb,alagag
_ b b
6Aa1...a5 = Qq;...aq6 + aalagagAa4a5a6 +x bb,al...a(; +x bb,alagagAa4a5a6
5q)b,a1a2a3 — bb,alagag

6q)b,a1...a6 = bb,al...a(; - 2(I)b,a1a2a3aa4a5a5 - 2¢b,a1a2a3$6bc,a4a5a6- (313)

The egs. (3.9) and the field strengths of egs. (3.11) are separately invariant under these
transformations, and in particular the transformations of the 3-form and the 6-form can
be written as

0Aayazas = O, A

a1tYazaz]

5Aa1...a5 = a[alAag...aS} + a[alAazasAa4a5a6] (314)

with gauge parameters

b 3 b
Aalag = X Apajas + Zx xcbb,calag

6
Aal...a5 - xbabal...as + ?xbxcbb,cal...as- (315)

Including higher order Og generators corresponds to higher powers of x in the equations
above. The full gauge invariance is obtained including all the Og generators.

It is worth mentioning that the normalisation used here is different from the one used
in the original Ey; paper [1]. This is for consistency with the normalisation used in the
rest of this paper. Going from this normalisation to the original one in [1] corresponds to
making the field redefinitions
%Aalagag
1

Aal...ae - 614&1..@67 (316)

Aal asaz

as can be deduced from eq. (2.6) in [1].

It is also instructive to consider the Maurer-Cartan form at the next order in the Og
generators. For simplicity we will now perform this analysis only for the 3-form, so that
we can neglect the contributions coming from commutators of Og generators among them-
selves. The generalisation to include the 6-form generators is straightforward, although
technically more complicated. We thus consider the group element as only containing the
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3-form generators in the Ej; sector and including the Og 1 operator of eq. (3.1) and the
Og 2 operator of eq. (3.3), that is

a,b,ciegey a,bybb3 ajaga
g = e"PePabercres ePabrbabs K1 eAerazas U279 (3.17)

Using eq. (3.4), as well as eq. (3.2), one gets
gilaug =P, + (auAalazas - (I)u,a1a2a3)Ra1a2a3

5
+ <au(1>a,b1b2b3 — §®H7avblb2b3> Kilybllmba + ... (3.18)
Using the inverse Higgs mechanism one solves for the Og 1 field in terms of the derivative
of the 3-form, and the Og 2 field in terms of the derivative of the Og 1 field. Plugging this
into the group element leads to

g—laﬂg _ P,u + FHGIG«QG«SRala2a3 + aaFublbgbgKf’blebS N (3_19)

This is an example of the general picture, in which after applying the inverse Higgs
mechanism one is left with the field strengths of the 3-form and the 6-form together with
infinitely many derivatives of those, without breaking any of the original symmetries. These
fields are the only forms that arise in the decomposition of Ej; with respect to GL(11,R).
Indeed, in [28] it was shown that all the positive level 11-dimensional generators of Ejq
can be cast in generators of the form R%%-93 R%9::96 and R99--981 together with
generators with at least one set of 10 or 11 completely antisymmetric indices (here we are
using a shortcut notation, in which each number corresponds to the number of antisym-
metric indices; for example the Og 2 generator for the 6-form is written as Kg L1 in this
notation). The fields associated to the former generators (the ones with sets of 9 antisym-
metric indices) were interpreted in [28] as being all the possible dual formulations of the
3-form and the graviton, while the latter were interpreted as giving rise to non-propagating
fields. In section 7 we will consider the case of Eq; fields with mixed symmetries, focusing
in particular on the case of the dual graviton in four dimensions, while in the next section
we will show that the introduction of the Og generators is crucial to understand and derive
the algebra that describes gauged supergravity theories.

4 Scherk-Schwarz reduction of IIB supergravity from FE;;

In this section we will show how to dimensionally reduce maximal supergravities in the
context of their £y formulation including the Og extension. We will in particular focus on
the case of ten-dimensional IIB reduced to nine dimensions and study both the dimensional
reduction on a circle and the Scherk-Schwarz reduction.

We will first introduce the Og generators required to encode the gauge symmetries of
the ten-dimensional theory. This gives rise to the algebra E%"l‘:‘flo 5. We will then express
the F1; and Og generators of the IIB theory in a nine-dimensional set-up. The consistency
of the truncation from ten-dimensional IIB supergravity to maximal supergravity in nine

dimensions corresponds to the fact that within the algebra Eﬁc% g of the ten-dimensional
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FE4q and Og generators one can find a sub-algebra Eﬁfgl appropriate to the nine-dimensional

theory. This indeed corresponds to a maximal supergravity theory in nine dimensions,
which is a compactification of the ten-dimensional IIB theory on a coordinate y. If one
takes the ten-dimensional group element not to depend on y apart from the momentum
contribution €Y%, where @ is the internal momentum, then this corresponds to standard,
i.e. massless, dimensional reduction on a circle parametrised by y, and the form of the group
element is preserved by the sub-algebra Eﬂcgl of the ten-dimensional algebra Eﬁc% g of Eq
plus Og generators appropriate to massless dimensional reduction. One can also consider
a ten-dimensional group element with a suitable y dependence, which we show to give rise
in nine dimensions to the massive theory corresponding to the Scherk-Schwarz reduction of
the IIB theory [29]. This different form of the group element is preserved by a different sub-
algebra of the ten-dimensional algebra Eﬁf% g of F11 and Og generators that we call Eﬁfgl
We show how to construct this subalgebra corresponding to Scherk-Schwarz reduction. The
mass parameter mixes Fq; and Og generators, and from the nine-dimensional perspective
this corresponds to a deformation of the massless F11 algebra. The occurrence of a deformed
E1; algebra associated to massive theories was shown for the first time in [11] for the case of
the ten-dimensional massive ITA theory. In that case the occurrence of a mass parameter for
the 2-form was shown to arise from requiring that the commutator of the 2-form generator
with momentum does not vanish, but is instead equal to the vector generator times the
Romans mass parameter.

We now consider the decomposition of the E1; generators appropriate to the IIB the-
ory, that arises from deleting node 9 in the Dynkin diagram of figure 1. The GL(10,R)
subalgebra associated to the non-linear realisation of gravity corresponds to nodes from 1
to 8 and node 11, while node 10 corresponds to the internal SL(2, R) symmetry of the IIB
theory. We denote tangent spacetime indices in ten dimensions with a, b,... and curved
spacetime indices with [, D, . . ., where the indices go from 1 to 10. One constructs the posi-
tive level generators as multiple commutators of the 2-form generator Rdi”a, a = 1,2, which
is a doublet of SL(2,R). Together with the GL(10,R) generators K% and the SL(2,R)
generators R', i = 1,2,3 at level zero, one has the doublet of 2-form generators at level
1, a 4-form generator Rbed ot Jevel 2, and then a doublet of 6-forms at level 3, a triplet
of 8-forms at level 4 and a doublet and a quadruplet of 10-forms at level 5, together with
an infinite set of generators with mixed, i.e. not completely antisymmetric, indices. We
consider the positive level generators as commuting with the momentum operator FP;.

We now want to write down the relevant algebra in ten dimensions. For simplicity,
we consider a level truncation and we therefore only consider in ten dimensions the 2-form
generators R, together with the GL(10,R) generators K &13 and the SL(2,R) generators
R'. We have the commutation relations

[R', R = fU,RF
[Ri,Rdb,Oz] _ D%GR&b’ﬁ (41)

where D%O‘ are the generators of SL(2,R) satisfying

(D, Di)g* = f¥, D" (4.2)
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and f%} are the structure constants of SL(2,R). In terms of Pauli matrices, a choice of
D> is .

Dlz% DQZ% Dgz%. (4.3)

We now add the Og generators to the Fy; formulation of ten-dimensional IIB. In this

way we encode all the local gauge symmetries of the ten-dimensional IIB theory. The

procedure is much like the one discussed in the previous sections for other cases. The Og

1 operator for the 2-form is a doublet of generators K d’i’é’a, satisfying
Kabea _ pralbda FKlabda _ 0, (4.4)
and whose commutation relation with the momentum operator P; is

A7iJA7 — a l;A7 a l;A b
[0, ] = AR — o8 phde (4.5)
Ignoring for simplicity the gravity contribution, the non-linear realisation can be con-
structed from the group element

2P g o o KOO JAGy (RO i R

g=ce e a,bé, o s (46)
and the corresponding Maurer-Cartan form gives
g7 g = AP [Pt (03 Az, — @55, )¢ T RO om0 ettt ] (1)

The inverse Higgs mechanism then fixes ¢ in terms of 93 A; , so that the R term

fab,a
becomes proportional to

F.

aice = Yaiga (4.8)
which is the field strength for the 2-form. This procedure is completely consistent because
the inverse Higgs mechanism preserves entirely the local subalgebra, which is SO(9,1) x
SO(2).

We now consider a generic compactification of the IIB theory in the above Fy; for-
mulation to nine dimensions. This will include the derivation of both the massless theory
and the Scherk-Schwarz reduction, which both have maximal supersymmetry. We thus
split the ten-dimensional coordinates in z#, p =1,...,9, and the 10th coordinate y. Cor-
respondingly, the momentum operator splits in P, and @, where @ = P,. As we did in
ten-dimensions, we consider a level truncation and thus we are only interested in 1-forms
and 2-forms in nine dimensions. The doublet of 2-form generators in ten dimensions gives
a doublet of 2-forms R and a doublet of 1-forms R*® = R®*?. One also obtains a

1-form from the GL(10,R) generators, namely R* = K%,, whose commutator with P, is
[R, Py = =0, Q. (4.9)

One also has the SL(2,R) triplet of scalar generators R’, as well as the singlet scalar
generator R = KY,, satisfying
R,Q] = Q. (4.10)
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The commutator between R* and R»% is
[R?, R»*] = — R, (4.11)
while the non-vanishing commutators with the scalars are

[R,R] = —R" [R, R%*] = R%®
[R', R™*] = D;*R™" [R', R*>*] = D> R*7. (4.12)

The commutator of R® with itself and the commutator of R*® with itself vanish,
[R*, R’ =0  [R%* R’ =o. (4.13)

These are all the E1; commutators we need consider at the level we are analysing. At the
end of this section we will also consider the 3-form generator R®¢ and 4-form generator
Rcd  The first arises from the 4-form generator of IIB with one index in the internal
direction, R while the latter is just the 4-form of IIB with all indices along the nine-
dimensional spacetime.

Just as for the Ej; generators, we also rewrite the ten-dimensional Og generators as
decomposed in GL(9,R) representations. The generator K a.be0 thys gives rise to K®be,

Klablo glab).a and Ko where

Klabla _ pryaba _ pelably,a Kab)a — r(ab)y,a K& — KY:ay,a (4.14)

The commutation relations of these operators with P, and @ are

(K% Jbe,a Py = 5aRbca . 5C[laRbc],a [Ka,bc,a’ Q] =0
K Klable B = sla Rb [ Klablha Q] = R«
L 4 “W (KD, Q=0
(K%Y By = [K** Q] = R¥™. (4.15)

Similarly, the dimensional reduction of the gravity Og 1 operator gives the Og operators
K@) Ko and K, that satisfy

(K@), P.] = 6" R” (K@, Q] =0
[Ka’Pb]Z(SI()l (K, Q] = R
(K, P,] =0 [K,Q] = R. (4.16)

We now write down the group element. For simplicity we will neglect Og 2 contribu-
tions, and therefore we will consider the Og 1 generators as commuting among themselves.
We will denote with ®o, and K Og the whole set of Og 1 fields and generators. Thus the
group element is

. Og ab,a a,o a . i
g = ex Peerq>OgK eAab,aR eAa,aR eAaR €¢R€¢1R , (417)
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where all the fields are taken to depend on x and y. We now compute the Maurer-Cartan
form. The result is

g 'dg = da" [P, + Aue®Q + (0uAaba — OpAanAs — Ppaba + Puayads — Ppualads
O () Ap o + Py A ady)e O RO 1 (9, A4 0 — D) o+ Plual.a
—®,Aga)e e PRV 4 (0,A — @0y + PpAa)e” R+ (040 — ©u)R
e 9,0 ] 4 dy[e?Q + (B Aab — OyAaadb — Plapa + Paady
DA, o Ap)e P RO L (5 Ay — By — DA )e P O ROCHR
(0 Ag — By + PAL)PRY + (0, — ®)R + ¢ 4 9, B 4], (4.18)

where the dots denote contributions from higher level E1; generators and Og generators.

Before discussing the Scherk-Schwarz reduction of the IIB theory, we first consider
the derivation of the massless nine-dimensional supergravity. We take all the fields in the
group element of eq. (4.17) not to depend on y, and using the inverse Higgs mechanism we
set the part of the Maurer-Cartan form of eq. (4.18) in the dy direction and proportional
to the F1; and Og generators to zero. This imposes

(I)[ab],a = q)a,a =0, =0 =0. (4.19)

Considering the dx* part and imposing the inverse Higgs mechanism on the remaining Og
fields one finds that the Maurer-Cartan form gives the field strengths

Fabc,a - a[aAbc},a - a[aAb,aAc}
Fab,oc = a[a*’élb],oz
Fop = a[a*’élb], (420)

which are invariant under the gauge transformations
0Aab,0 = 0Ny, — OjaAAy.a 0Aga = Oy 0A, = OgA. (4.21)

This construction is consistent because the relations that the inverse Higgs mechanism
imposes are invariant under the local subalgebra, which is SO(1,8) ® SO(2). The field-
strengths and gauge transformations we have derived are those of the 1-forms and 2-forms
of massless maximal nine-dimensional supergravity.

In the above, we have set to zero the Og fields corresponding to the generators K082
K% K%and K. Implementing this in the group element, and so the Cartan form, we find
that these generators in fact play no role. These generators are indeed the only ones in
egs. (4.15) and (4.16) that do not commute with Q. As such, one is left with the original
FE4q generators and a subset of the Og generators, all of which commute with @) apart from
the scalar generator R, and all fields which do not depend on y. We note that the operator
@ appears in the commutation relations of eq. (4.9) and (4.10). However, (2 commutes with
every operator in the theory other that R, and the commutator of R with @ is proportional
to @, and so one can consistently set the commutator of R* with P, to zero and ignore
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@ in the algebra. Correspondingly, one can ignore the presence of @) in the group element
of eq. (4.17), which corresponds to no y dependence at all. Thus one finds a non-linear
realisation that is the one that arises if one constructs the massless nine-dimensional theory
using the formulation of Fy; appropriate to nine dimensions, which corresponds to deleting
nodes 9 and 11 in the Dynkin diagram in figure 1 and decomposing F1; in terms of the
GL(9,R) subalgebra. The Og generators that are left are the Og generators that encode
the gauge symmetries of the nine-dimensional theory, and they form with the non-negative
level Fq; generators the algebra Eﬁcgl To summarise, the massless nine-dimensional theory
arises from taking the subset of Og generators that commute with ). This implies that one
can consistently remove () from the algebra, which can be used to construct the non-linear
realisation. This in the nine-dimensional £ formulation of massless maximal supergravity.

We now describe the Scherk-Schwarz dimensional reduction of the ten-dimensional 11B
supergravity theory to nine dimensions in an analogous way. We take the same starting
point, namely the E1; formulation of the IIB theory in ten dimensions together with the
Og generators and corresponding fields. We consider the group element

g= ot P y(@QtmiRY) ,@0g (1) KO8 ,Agp o (2)R* jAa,a ()R> Aa(z)R* ,d(2)R j¢i(x) R (4.22)
We thus take the dependence on the coordinate y in the group element to be in the form
eY(Q+miRY) This is equivalent to taking the theory to be defined on the conventional nine-
dimensional spacetime tensored with a manifold that is a circle constructed form the usual
ten-dimensional circle of spacetime and a circle, or one parameter subgroup of SL(2,R),
which is specified by the mass parameter m;. The factor e¥(@Q+miR") eeurs at the beginning
of the group element in the usual place for the introduction of spacetime, and the fields
are taken to not depend on y, however we can rearrange the group element by taking the
ViR factor to the right whereupon the fields acquire a y dependence, that is

g fry exPeyQ eéog(xyy)KogeAab,a (m7y)Rab,a eAa,Oé(xyy)Ra’a eAa (‘T)Ra ed)(m)Reym’LRl e(bl (m)RZ . (4.23)

The y dependence of the fields in this last expression can be derived using the relation
eteBe A = ¢ B! (4.24)

This implies in particular that any SL(2,R) doublet acquires the same y dependence. For
instance for the 2-form this is

Agp.a(,y) = (7P Ay (), (4.25)

and similarly for any doublet, including the Og fields, while the SL(2,R) singlets acquire
no y dependence. This is the y dependence that results in the Scherk-Schwarz dimensional
reduction, which consists in compactifying the ten-dimensional theory to nine dimensions
on a circle of coordinate y, while performing a y-dependent SL(2,R) transformation [29].

From the group element in (4.23) one obtains the Maurer-Cartan form of eq. (4.18).
It is instructive to write this down to show explicitly the y dependence. The result is

g_ldg = dz* [P,u + AMB¢Q + (a,uAab,oz - a,uAa,aAb - q)u,ab,a + q)(ua),aAb - (I)[ Ab

+P@(1a) Apo + <I>ﬂAa7aAb)e_¢iRi e~ ymiR' paba—ymi R’ ¢ R’

ala
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+(OpAaa = Plua)a + Plual,a — @MAW)e—qﬁe—@Rie—ymiRiRa,aeymiRieqsiRi
+(O0pAa = Pua) + ®,A.)e’ R + (0,6 — @) R + e_¢iRi3Me¢iRi 4]
+dy[e?Q + (D Aaba — OyAaadb — oo + Paady
—|—‘1>Aa,aAb)e_¢iRie_ymiRiRab’o‘eymiRie@Ri + (0y A0 — Pa,a
—‘PAa,a)e*‘be*@Rie*ymiRi ROceymiR o$iR (0yA, — O, + BPA,)e’R®

+(0,6 — ®)R+ e 4T m R ). (4.26)

Alternatively, one can compute the Maurer-Cartan form with the group element written
as in eq. (4.22). In this way of writing down the group element, the fields have no y
dependence and the dy part of eq. (4.26) results from passing m;R’ through the group
element. Indeed it can be shown that the two ways of computing the Maurer-Cartan form
are identical using the y dependence given as in eq. (4.25).

As for the massless case, we now use the inverse Higgs mechanism to impose that all
the terms in dy proportional to positive level generators vanish, and we get

o, a(x) = miDi)aﬁAa,ﬁ(x) (I)[ab],a(x) = (miDi)aﬁAab,ﬁ(x)
®=d, =0. (4.27)

This does not apply to the scalars ¢;, and indeed the m; R’ term in the dy part of eq. (4.26)
is not affected by the inverse Higgs mechanism. This will be discussed later. We put the
relations of eq. (4.27) back in the group element and so the Cartan form, and we use the
inverse Higgs mechanism on the remaining Og fields such that the dz* part of the Cartan
form gives the field-strengths

Fabc,a = 8[a’4bc},a - a[aAb,aAc} - (miDi)aﬁA[ab,ﬁAc]
Fab,a = 8[(1Ab],oz + (miDi)ozﬁAab,Ba
Fup = a[aAb], (4.28)
which transform covariantly under the gauge transformations
5Aab,oz = a[aAb],oz - a[aAAb},a + A(miDi)aﬁAab,ﬁ
0Aga = 0ula + A(m;D)oP Ay g — (m; D)o A g,
0A, = O A. (4.29)
These are the field strengths and gauge transformations of the 1-forms and 2-forms of the
nine-dimensional gauged maximal supergravity that arises from Scherk-Schwarz reduction
of the IIB theory [29].

We now discuss the scalar sector. One obtains the correct covariant derivative for the

scalars observing that the metric that results from the Maurer-Cartan form in eq. (4.26) is

eu’ Aue(Zb
4.30
(O e¢) (1.0)
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as the coefficients of the generators P, and @ (for simplicity we are actually not considering
the gravity contribution in nine dimensions and therefore the coefficient of P, in eq. (4.26)
is the diagonal metric). The corresponding inverse metric is

<eg“ :{;) . (4.31)

Taking account of having applied the inverse Higgs mechanism, the only other part of the
Maurer-Cartan form along dy is

GyiR' = mief‘biRiRie@Ri, (4.32)
while the R’ term along dx* is
GuR = e 9l 9,0 (4.33)
Therefore the covariant derivative for the scalar is given by
"G — AaGly.is (4.34)

which reads , , _ .
e O 9ue® T — Aymiem P Rl (4.35)

This analysis therefore gives all the covariant quantities of the nine-dimensional theory
corresponding to the Scherk-Schwarz reduction of IIB.

As we observed, eq. (4.27) expresses some Og fields in terms of Fy; fields. Similarly,
requiring that the Og 1 operators K% and K®® have vanishing coefficients in the dy
direction relates ®(qp o and Pq o to Og 2 fields carrying the same spacetime and SL(2,R)
representations. Iterating this one obtains for any n an Og n generator identified with
Agp o times the nth power of the mass parameter, and similarly for A, .. This generalises
to all the fields in the theory. Putting these solutions into the original group element of
eq. (4.22) we find that it takes the form

g= et P oy(Q+miRY) e<1>0g($)f(ogeAab,a (x) Rabe eAaa ()R eAa(@)R? d(@)R ,¢i(2) R , (4.36)

where

Ra,a — RV 4 miD%aKa,,B 4.
Rab,a _ Rab,a + mingaK[ab}’ﬁ +e (4.37)

where the dots correspond to higher powers in m; multiplying higher grade Og generators,
and K denotes deformed Og generators associated with nine-dimensional gauge transfor-
mations. The group element of eq. (4.36) resembles the group element corresponding to the
massless nine-dimensional theory, in the sense that each generator in eq. (4.36) corresponds
to a generator with identical index structure of the massless nine-dimensional theory. As
such we can interpret the R generators as deformed Ej; generators. In particular, we claim
that although the expansions in eq. (4.37) are non-polynomial in m;, all the commutation
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relations involving these operators, or the commutation relations between these operators
and momentum, only contain terms at most linear in m;. In particular, the commutator
of R with P, is

(R, P.] = —(m; D)6l R%, (4.38)

while the commutator of R%® with P, vanishes, as can be seen from eq. (4.15).
The deformed FEj; and indeed the deformed Og generators have a simple algebraic
classification. They are the operators that commute with the operator Q defined as

Q=Q+mR. (4.39)

Indeed, the commutation relation of R*, R%® and R with Q is

[Q,R] =0
[Q, R**] = m; Dj* R*"
[Q, R™] = m; D™ R (4.40)

We thus have to deform the operators R*® and R, and from eq. (4.15) one gets that
the deformed operators given in eq. (4.37) satisfy

[Q,R*] = [Q,R™] = 0. (4.41)

The Og generators of the nine-dimensional theory are also redefined in order to commute
with Q. One thus constructs the generators K®"® and K ()@ which are Og 1 generators
followed by an expansion in m; of higher grade Og generators. The Og 1 generator K ()
of the singlet vector R® is not modified as it commutes with Q.

Having introduced the operator Q, we can write down the group element of eq. (4.36) as

g= o0 P oyQ p®0g (2) KO8 L Aup o (2) R* ,Aa,a(2) R jAa(2) R ,¢(2)R pi(2) R (4.42)

Indeed, we now show that using the operator @ rather than Q one obtains the field
strengths, including the covariant derivative of the scalars, in a straightforward way. Cal-
culating the Cartan forms from the group element of eq. (4.42) and using eq. (4.38) and
the fact that all the positive level operators commute with Q we find

g7 dg = dz®[Py + (0aApe — OaAbade — (miD)o’ Agy gAg + - - e O Rheooilt
(O Aba + (MiD)o Agy g + -+ e Pe 0 RbP R (9, Ay + - )e? R
4 0u0R + Age 9l e ORQIReH R 4 o= il (00 — AamiRi)e¢iRi]
tdye R e~ ORQeIRPR (4.43)

where the dots in each term denote the Og field contributions, whose role is to cancel the
non-antisymmetric terms in the Cartan form using the inverse Higgs mechanism. As ex-
plained above g~'dg is invariant under ¢ — gog and so all the coefficients of the generators
in the above equation are invariant. Hence, in particular the two terms

dxP,, dae 4R (0a — AamiRi)eqbiRi (4.44)
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are separately invariant under gy transformations. Hence we can identify the covariant
derivative of the scalars as

e P (9, — Agm; R T (4.45)

which now only transforms under the local transformations. The infinite number of rigid
go transformations constitute the gauge transformations and so this covariant derivative is
also covariant in the conventional sense.

We note that the operator @ and the variable y although important for the logic
of the result did not appear explicitly in the calculation of the terms that lead to this
covariant derivative. Indeed one could have written down the group element without any
Q or y dependence and the Cartan forms would give the correct covariant derivatives and
so gauge invariant quantities. Dropping the operator @), one obtains in particular the
commutation relation

[R%, P)] = 6¢m;R* . (4.46)

We now consider eq. (4.46) as our starting point to define the nine-dimensional algebra
E%"l‘fgl This is the algebra that describes the deformed nine-dimensional theory considered
in this section, and contains the generators m;R’, P, and all the positive level deformed
generators, including the deformed Og generators. In the remaining of this section we
will show that all the results obtained so far can be derived simply requiring the closure
of the Jacobi identities in Eﬁﬁcgl starting from eq. (4.46). This approach is entirely nine-
dimensional, and one never makes use of the fact that the theory has a ten-dimensional
origin. As we will see, this provides an extremely fast method of deriving the field strengths
of all gauged maximal supergravities.

We start considering the Jacobi identity involving R%, R%® and P,. The commutator
between R* and R"® is a deformation of the commutator in eq. (4.11), and the most general

expression we can write with the generators at our disposal is
(RY, ] = — R { am DR (4.47)

with a to be determined, and where K (ab)-

is the modified Og 1 generator satisfying
(K@) p]=g§laRh)e, (4.48)
We also demand that the commutator between R and P. be of the form

[Rab,a’ c] _ b(miDi)ﬁa(SLaRbLﬁ7 (449)

with the parameter b to be determined. The Jacobi identity involving R%, R%® and P, is
satisfied provided that the values of a and b are

a=1 b=—1. (4.50)
To summarise, we have obtained the relations

[Ra7Rb,a] _ _Rab,a + miD%aR(ab)’a
[Rab,a’Pc] _ _(miDi)ﬁa(ngRb}ﬁ’ (4.51)
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and in particular the second relation coincides with eq. (4.38).

Proceeding this way, one can determine all the commutation relations of the modified
F1q1 generators among themselves and with the momentum operator P,. For instance, the
Jacobi identity involving the operators R%, R and P, requires the cancellation of terms
linear in m; as well as terms quadratic in m;. The latter are cancelled by requiring that
also the commutator of K% with P, receives a correction at order m;. The result is

. 3 L
[Ra’ Rbc,a] _ §(miDZ)gaKa’bc’ﬁ (4‘52)

and
- - . 1 ) - -
MWW%RJ:ﬁRW“—%RM@—gm%mM%@K“ﬂ—@Kw%. (4.53)

Using the definition of the operator R ip eq. (4.37), and eq. (4.14), one can for instance
recover eq. (4.52), that we have obtained requiring the closure of the Jacobi identities,
directly using the ten-dimensional commutation relations. Indeed, at lowest order in the

mass parameter, one gets
_ . 3 .
[Ra’ Rbc,a] _ (miDl)ﬁa[Kay, Ky,bcﬁ _ K[b,c]y,ﬁ] _ §(miDl)6aKa,bc,6‘ (454)

In order to show the power of this method, we now determine the field-strengths for
the 3-form and the 4-form of the nine-dimensional massive theory without using its ten-
dimensional origin. We first write down the relevant commutators of the massless theory.
We thus add to the commutators of egs. (4.11) and (4.12) all the commutators that involve
generators up to the 4-form included. We only write down the non-vanishing commutators,
that are

[R, Rabt:] — Rabc [Ra, Rbcd] — _Rabcd
[Ra,a7Rbc,B] _ EaﬁRabc [Rab,a’ Rcd,ﬁ] _ EaﬁRabcd’ (4.55)
where €9 is the invariant antisymmetric tensor of SL(2,R). Starting from these relations
and using eq. (4.46) we can determine all the commutation relations involving such de-
formed generators by imposing the closure of the Jacobi identities. Denoting with Re¢
and R the deformed generators, one can show that the only commutation relation that

needs to be modified with respect to eq. (4.55) is the commutator between two deformed

2-form generators, which becomes
[Rab,a’ Rcd,,@] _ 6ozBRabcd + 2(miDi)a6R-[a,b}cd7 (4.56)

where K%t is the deformed Og 1 generator associated to the deformed 3-form generator
Rt satisfying
[[}'a,blbzb:a’ P)= 52«Rb1b2b3 _ 5([:afgb1bzbs] (4.57)

and we have used ¢*? to raise the SL(2,R) index, that is

D' = e1DLP, (4.58)
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and D' *8 is symmetric. The deformed Og 1 generator for the 4-form is K®?1%203 gatisfying
G A O (4.59)

Both the deformed 3-form and the deformed 4-form commute with the momentum operator
(actually neither the 3-form nor the 4-form generator are really deformed, but this is not
relevant for this analysis).

We now consider the group element

. - Og pabed pabe pab,o pa,o a . pi
g — ex Pe(I)OgK eAabcdR eAabcR eAab,aR eAa,aR eAaR ed)Red)'LR , (460)

which only depends on the nine-dimensional coordinates x®. Computing the Maurer-Cartan
form and applying the inverse Higgs mechanism, one can show that all the terms which
are not antisymmetric are set to zero by fixing the Og 1 fields in terms of the Fy; fields,
and one is left with completely antisymmetric terms. These are the field-strengths of the
1-forms and 2-forms given in eq. (4.28), as well as the field-strengths

1

Fal...a4 = a[alAa2a3a4} + eaﬁa[alAaws@Aazﬂ,ﬁ - 5(miDi)aﬁA[awmaAa?,M]ﬂ
1 (0%
Fal...as = 8[a1Aa2...a5] - a[alAa2a3a4Aa5] + 56 ﬁa[alAGQGg,aAa4a5},ﬁ
fe 1 i\«
— €04, Aasas,aAas,8A0s) + 5 (miD") B Algras.0Aazas,3Aas) (4.61)

for the 3-form and the 4-form. These are indeed the field-strengths of the 3-form and its
dual 4-form of the massive nine-dimensional supergravity. The gauge transformations of
the fields arise in the non-linear realisation as rigid transformations of the group element
with the Og generators included. One obtains the transformations of the 2-forms and
1-forms given in eq. (4.29) as well as the transformations

1

26
1 (6%

0Aay..as = 8[a1Aa2a3a4] + 56 ﬁa[a1Aa270éAa3a4]ﬂ - a[a1AAa2a3a4}

§Aabe = Oulhyg + €O Aoy 5+ =€ 0 NAy o Ay 5 + (MiD)*P Ny 0 Ay

(4.62)

azasl,f

1
+§eaﬁa[alAAa2,aA

of the 3-form and the 4-form.

Observe that although the operators R’ other than m; R’ do not belong to the algebra
Eﬁ‘fgl, one can nonetheless use the group element of eq. (4.60). Indeed, the covariant
derivative for the scalars is also obtained from the nine-dimensional group element of

eq. (4.60). Indeed, the Maurer-Cartan form contains the terms
e_qbiRi@MeqbiRi - Aue_¢iRimiRie¢iRi, (4.63)

which we recognise as the covariant derivative of the scalars.
To summarise, we have found a general pattern for carrying out dimensional reduction
to obtain gauged supergravities. The higher dimensional coordinates have a generator (Q
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in the massless case and Q in the Scherk-Schwarz case) which is associated with the space
being reduced on. From the set on F1; and Og generators, we can find a set of deformed E1;
generators which are just those that commute with the preferred generator associated with
the reduction (Q or Q). The field strengths can then just be deduced from this deformed Ey;
algebra. We will see that this method transcends dimensional reduction and in fact applies
to all gauged maximal supergravities. This will be the focus on the next two sections.

5 F;; and massive ITA

In the last section we have analysed the massless and Scherk-Schwarz reductions to nine
dimensions of ten-dimensional IIB supergravity from an Fj; perspective. Starting from
the algebra Eﬁc‘i‘lo p of Eqp plus the Og generators that encodes all the gauge symmetries
of the ten-dimensional theory, the massless dimensional reduction corresponds to taking
the FEy1 generators together with the subset of Og generators that commute with the
momentum operator in the internal direction. On the other hand, the Scherk-Schwarz
dimensional reduction corresponds to choosing operators that commute with a twisted
internal momentum operator, and the twist is such that these operators are combinations
of the ten-dimensional Fy; and Og generators. It is important to stress that the content of
the sets of generators in the massless and the Scherk-Schwarz theory are exactly the same,
and the two theories differ because the commutation relations are different. In particular,
the set of non-negative level F71 generators in the massless theory is the same as the set
of operators in the Scherk-Schwarz reduction case that are obtained by adding to the Fq;
generators suitable Og generators of the ten-dimensional theory multiplied by powers of
the mass deformation parameter m;, where i is an SL(2,R) triplet index. From the nine-
dimensional perspective, these operators look like F; generators, but their commutation
relation receives a correction at order m;. Therefore, the algebra appears from the nine-
dimensional perspective as a deformation of the original F7; algebra. This deformation is
such that the commutator of two positive level generators gives the standard Fqq result at
zero order in m; together with an order m; deformation proportional to the Og generators
of the nine-dimensional theory. Correspondingly, the commutator of the deformed positive
level Eq1 generators with the nine-dimensional momentum is proportional to the deformed
Eq1 generators times the mass parameter. Starting from the commutation relation (4.46),
the entire algebra of the nine-dimensional deformed theory can be determined by requiring
that the Jacobi identities close.

In this section we consider the case of the massive deformation of the ITA theory,
discovered by Romans in [8]. In this case the theory does not arise as a dimensional
reduction of eleven-dimensional supergravity, and therefore one cannot deform the FEi;
generators adding eleven-dimensional Og generators. Nonetheless, we will show that from
the ten-dimensional perspective one can still consider deformed Fp; and Og generators,
and the corresponding algebra Eﬁf% 4> Which appears as a deformation of the massless
ten-dimensional algebra, determines all the field-strengths of the theory. In [11] it was
shown that the massive IIA theory can be recovered from an E7; perspective by adopt-
ing a non-trivial commutation relation between the momentum operator and the positive
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level generators. In particular the commutator of the 2-form generator with momentum
gives the 1-form generator multiplied by the mass deformation parameter. The resulting
algebra [11] though has a problem of consistency because the corresponding Jacobi iden-
tities do not close. In [30] it was shown that if one insists on requiring the consistency
of the algebra for the lower-rank forms, the commutator of two 2-forms cannot vanish in
the massive theory, but instead is proportional to an operator in the (3,1) representation
of GL(10,R). This operator is indeed the Og 1 operator for the 3-form. We show that
the whole algebra corresponding to the massive ITA theory is determined starting from the
deformed commutation relation of the 2-form with momentum and requiring the closure of
all the Jacobi identities. A different approach, based on the Kac-Moody algebra Fyg [31],
has recently been given in [32].

We start by writing down the algebra associated to the massless ITA theory. The mass-
less ITA theory arises from the dimensional reduction of eleven-dimensional supergravity.
The corresponding algebra arises from a decomposition of the Fy; algebra in terms of
GL(10,R) as relevant for the ITA theory, which corresponds to deleting nodes 10 and 11 in
the Dynkin diagram in figure 1. In this section we denote with a, b, . . . the tangent spacetime
indices in ten dimensions. In deriving the Ej; generators in terms of their GL(10,R) ITA
representations it is useful to consider the eleven-dimensional generators and denote with y
the internal 11th coordinate. One then obtains that the theory contains a scalar R, which
is the GL(11,R) generator KY,, a vector R* corresponding to the eleven-dimensional K%,
a 2-form R which arises from the eleven-dimensional 3-form with one index in the internal
direction R%Y, and then a 3-form R, a 5-form R™ % a 6-form R a 7-form R %7,
an 8-form R a 9-form R and two 10-forms R™ %0 and R'*-%10  together with
an infinite set of generators with mixed, i.e. not completely antisymmetric, indices [12].

We now write down the part of the Fy; algebra that involves these completely antisym-
metric generators. This was first derived in [11], but we use different normalisations for the
generators, that make the eleven-dimensional origin of the algebra more transparent. For
simplicity, we will neglect the contribution from the 10-form generators, that is we will con-
sider a level truncation only involving generators up to the 9-form included. The algebra is

[R, Ra] — _Ro [ Rab] _ Rab

[R, Ral...as] — Ral...a5 [R Ral 7] — al a7

[R, Ral...ag] — Ral...ag [R Ra1 9] — al -ag
[Ra’Rbc] — Rabc [Ral RA2-a 6] — _ Ra1---a6
[RaljRag...ag] — 3Ra1...a8 [Ralag Rag... 5] — _2RCL1 .as
[R01(12’ RGS---CW] — Ral--ﬂ? [RG1(12 R(IS--- 8] — _2R¢11 -ag

[Ralaz’Rag...ag] — Ral...ag [Ral .as Ra4... ] Ral .ag

[Ral...aij(M...ag] — Ral...agg’ (51)

with all the other commutators vanishing or giving generators with mixed symmetries. One
can show that all the Jacobi identities involving these operators are satisfied. Following the
results of section 4, one can then obtain the Og generators of the ten-dimensional theory
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by decomposing the Og generators of the eleven-dimensional theory in terms of represen-
tations of GL(10,RR). The subset of such generators that commute with the momentum
operator along the 11th direction are the Og generators of the massless ITA theory. These
are exactly the operators that are needed to encode all the gauge symmetries of the fields
of the massless ITA theory. This corresponds to the fact that the massless ITA theory arises
as a circle dimensional reduction of eleven-dimensional supergravity. In particular, for each
n-form Fy; generator the corresponding Og 1 operator is K ®1-br gatisfying K(@b1-tnl — (.

We now consider the deformation of the massless ITA algebra giving rise to massive
ITA. This theory was constructed by Romans in [8], and it corresponds to a Higgs mecha-
nism in which the 2-form acquires a mass by absorbing the vector. In [11] this mechanism
was recovered from an F7; perspective by adopting a non-trivial commutation relation
between the 2-form generator and momentum. Following the results of section 4, we in-
terpret this as a redefinition of the Ej; generators. We thus denote all the generators of
the massive theory with a tilde. These generators, although forming a set identical to the
one corresponding to the Fq; generators of the massless theory, have different commuta-
tion relations. These commutation relations make the corresponding algebra look like a
deformation of the massless algebra involving the mass parameter. We thus write down
the commutation relation between the 2-form and momentum as

[R®, P = —mél*RY, (5.2)

where m is the Romans mass parameter. Our strategy is to use eq. (5.2) as our starting
point, and to derive all the commutation relations of the deformed theory from it imposing
the closure of the Jacobi identities. We will show that this will fix all the field-strengths
and gauge transformations of the forms in the theory. In [33] it was shown that the super-
symmetry algebra of ITA closes on all the forms predicted by Fy1, and the field-strengths
and gauge transformations of the form fields were derived imposing the closure of the su-
persymmetry algebra. We will show that the field-strengths and gauge transformations
as obtained using supersymmetry exactly coincide, up to field redefinitions, with the ones
obtained here from Fjq;.
The Jacobi identity involving the operators R, R% and P, imposes that

R, P,| = —2P,. (5.3)
Introducing the Og 1 operator for the deformed 3-form, defined as
[}?(I,blbgbg Pc] _ 5aRb1b2b3 _ 5[&Rb1b2b3] (5 4)
? C (& °

one can then show that the Jacobi identity between two 2-forms and momentum im-
poses [30]
(R, R = —2mKabled, (5.5)

One can then show that the Jacobi identities involving the scalar operator R require a non-
trivial commutation relation between the deformed 7-form generator and the momentum
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operator, while the commutator between the 2-form and the 5-form generator has to be
modified by a term proportional to the Og 1 K%t the 6-form, which satisfies

[Ra’bl"'bG,Pc] — 52Rb1m56 _ 5([20Rb1~~~b6]_ (56)
The result is
[Re+97, By = moy" Roz-o7) (5.7)
and
[RalaQ,Rbl'”b5] — Ra1a2b1...b5 + mk[a17d2]b1---b5‘ (58)

Finally, the Jacobi identities also impose that the commutator between the 9-form and mo-
mentum, as well as the commutator between the 2-form and the 7-form, must be modified.
The result is

(R0, Py] = —5mo)™ Ro2) (5.9)
and

17

[RalaQ,Rbl'"b7] _ Ralagbl...b7 _ _mk[al,ag}bl...b7’ (510)

where K@t ig the Og 1 operator for the 8-form, satisfying
[f{a’bl"'bg,Pc] _ (SgRbl"'bg _ 6([:aRb1"'b8]. (511)

All the other commutators are not modified, and they are as in eq. (5.1) with all operators
replaced by deformed operators.

To summarise, we have shown that starting from the Ej; algebra of eq. (5.1) and
introducing the deformed 2-form generator which satisfies the commutation relation of
eq. (5.2), the Jacobi identities determine completely the rest of the algebra. In particular,
once the algebra is expressed in terms of the tilde generators, the only commutators that
are modified with respect to eq. (5.1) are those of egs. (5.5), (5.8) and (5.10), while the
additional non-trivial commutation relations with P, are given is egs. (5.3), (5.7) and (5.9).

We now consider the group element

ex'Pe(I)OgKOgeAal.4.a9Ra1ma9 . Aa1.4.a5Ralma5 eAa14.4a3Ra1ma3

.. €

eAarap B2 AR SR (5 19)

g:

where we denote with ®o, the whole set of Og 1 field of the ten-dimensional massive IIA
theory. Similarly we denote with K©% the whole set of deformed ten-dimensional Og 1
operators, which we treat as commuting because we are ignoring the contribution of Og 2
generators for simplicity. One can compute the Maurer-Cartan form that results from the
group element in eq. (5.12). The result is

90,9 = €* P, + 0,6R + (0, A0 +mAug + - )e’ R+ (0 Agyay + -+ e P R

+<aﬂAala2a3 — 9 Anyay Aas + %Awl Augay + - - > fpar-as

m -
+ <8ﬂAal~..a5 + 2aﬂAa1a2asAa4a5 + gAﬂal Aa2a3Aa4a5 + ) € ¢Ra1ma5
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+ (auAal .ag Aal...a5Aa5 - 2auAa1a2a3Aa4a5Aa5 + auAalagagAa4a5a5
m
BE

A,ual AagagAa4a5A _ Aual...as + .. .)Ral...(lﬁ
+<8uAa1...a7 - auAal ...as5 Aa6a7 - auAalagag Aa4a5 Aa6a7 Aual Aagag Aa4a5 Aa6a7

+ ... )6—2¢Ra1...a7 + (({9“14@1“@8 + 33MAG1___Q7A(18 + 2auAa1...a6Aa7ag

+8MAa1...a5AaG...ag - 3auAa1 a5Aa6a7Aa8 - 36 Aa1a2a3Aa4a5 Aa6a7Aa8
+2auAa1..a3Aa4...a5Aa7ag - A,ual AagagAa4a5Aa5a7A - A,ual...asAcwag

+5mAua1...ag 4o >6¢Ra1...a8 + <3MAa1ma9 — 8MAG1___G7AGSQQ
1 1
+§8MA(11...a5 Aa6a7Aa3a9 + gauAalagagAa4a5Aa6a7Aagag

m s =
+@Aua1 AagagAa4a5Aa5a7Aagag + - > € 3¢Ra1...a9 + .- (513)

The dots at the end denote terms proportional to the higher level deformed FEy; generators
as well as all the Og generators, while the dots in each bracket denote the contributions from

the Og 1 fields, which we did not write down explicitly because their contribution vanishes
after antisymmetrisation of the p index with the other indices. Indeed, the Og 1 fields in
the group element of eq. (5.12) are @4, p,, for n =1,2,3,5,..., satisfying @1, 4, 4] =0
The inverse Higgs mechanism relates these Og fields to the deformed FE7; fields in such a

way that only the completely antisymmetric terms in (5.13) survive. These terms are

Falag
Falagag

Fal...a4

Fal...aa
F,

ai...ay

!

aj...ag

...a10

= Oy A
= O, A

— A[

1
= a[al Aa2---a10] - a[a1Aﬂm---a8*’4(19(110} + 58[01‘40«2---@6‘40«70«8‘4

+mAg,ay

az]

aza3)

m
= a[al Aa2a3a4} - a[al AGQGSA(M] + EA[MCQAGBCM}

m
= a[al Aag...a(;} + 28[(11 Aa2a3a4Aa5a6} + gA[alazAa3a4Aa5a6]
= 8[a1 Aag...aﬂ - 8[a1 Aa2---a6Aa7] - 28[a1 Aa2a3a4Aa5a6Aa7] + a[m Aa2a3a4A

asagar]
m
_gA[alagAa3a4Aa5asAa7] - mAal...cw
= 8[(11 Aag...ag} - 8[(11 Aag...a6Aa7a8] - a[alAa2a3a4AasaGAa7a8]

m
— E A[a1a2 Aa3a4 Aa5 ae Aa7a8}
= a[al Aag...ag} + 3a[a1 Aaz...agAag} + Qa[al Aaz...a7Aa8a9} + a[al Aa?"'aﬁ A‘”"'ag}
—38[a1 Aay...a5Aaras Aag] - 38[a1 Aazazas Aasag Aazas AGQ] + 28[‘“ Aaz..a1Aas a7 A

agag)
m
Aa3a4Aa5asAa7a8Aa9] — 2mA[m...a7Aagag] + 5mAal.,.a9

ai1a2

4

agaio]

1 m
+§a[a1 Aa2a3a4Aa5asAa7asAa9a10} + @A[alazAaSMAasasAawSAagalo}' (5'14)
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These are the field-strengths of the fields of the massive ITA theory. Out of these field-
strengths one can construct the field equations, which are duality relations between the
various field-strengths. In particular, the 2-form Fj,,, is dual to the 8-form Fj, 4, the
3-form Fy, 4,4, is dual to the 7-form F,, ,. and the 4-form Fj, ., is dual to the 6-form
Fy, ..as, while the 9-form Fj, ., is dual to the derivative of the scalar and the 10-form
F,,. a, is dual to the mass parameter m. All these relations are covariant under the local
subalgebra of the non-linear realisation, which is SO(9,1).

The gauge transformations of the fields arise in the non-linear realisation as rigid
transformations of the group element, g — ggg, as long as one includes the Og generators.
One obtains

5A, = O,A — mA,
0Aaray = Oy May)
0Aarasas = Olay Nagas) T Ojay Aagas) — MA[ay Adgas)
0Aq;..a5 = Olay Nay...a5) — Ojay Masas Aasas) — 20(a Naz Aagasas) + MA[g; Aazas A

agas]
5Aa1...a6 _ 8[a1Aa2---(IG] + 3[a1Aa2a3Aa4a5a6} - a[alAAaz...as] - 6[a1AAa2a3Aa4a5a6}
+mAa1...a6 + mA[a1 Aa2...a6] + mA[Gl A“2a3 A‘M%GG]
1
5Aa1...a7 = a[alAaz...(I?] o ga[alAAa2a3Aa4a5Aa6a7} + a[alAGQAa3"'a7]
1
+ gmA [a1 Adsas Aasas Aaed?]

5Aa1...a8 = 8[a1Aa2...a8] + a[alAazagA(M_.ag] + 3a[a1AAa2...a3] + a[alAAa2a3a4Aa5a6Aa7a8]
_26[a1Aa2Aa3...a8} - 5mAa1...a8 - 3mA[a1 Aag...ag] - mA[al Aa2a3a4Aa5aeAa7ag}

1
5Aa1...a9 = a[alAag...ag] - Ea[alAAazasAa4a5Aaea7Aasa9} + a[alAazA

as...ag|
1
+EmA[a1 Aa203Aa4asAa6a7Aaga9]' (5'15)

In [33] the supersymmetry transformations of all the forms and dual forms of the
massive IIA theory where determined. The supersymmetry algebra closes on all the local
symmetries of the theory, and this was used to determine all the gauge transformations
and the field-strengths of the various forms, as well as their duality relations. These
forms are exactly those predicted by Fi;. One can show that the field strengths and
gauge transformations of [33] coincide with those given in egs. (5.14) and (5.15) up to field
redefinitions. The fact that using simple algebraic techniques one can easily determine
these quantities proves the power of the Fy; formulation of maximal supergravities and of
the methods explained in this paper. In the next section we will apply these methods to the
case of maximal gauged supergravity in five dimensions, deriving again the results of [20].

6 F;; and gauged five-dimensional supergravity

In section 4 we derived the algebra Eﬁfgl associated to the Scherk-Schwarz dimensional

reduction of the IIB theory to nine dimensions. After deriving the field-strengths of the the-
ory from a ten-dimensional group element with a given dependence on the 10th coordinate
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y, we have shown that the same results can be obtained directly in nine dimensions. Indeed
from the nine-dimensional perspective the fact that the ten-dimensional group element has
a non-trivial y dependence translates in having generators of the nine-dimensional theory
that are deformed with respect to the massless case. We have shown that the algebra
of these deformed generators is uniquely fixed by the Jacobi identities, and in deriving
the deformed algebra in this way one never makes use of the fact that the theory has a
ten-dimensional origin. This approach was indeed taken in the previous section, where
we derived the algebra Ei‘ﬁ% 4 corresponding to the massive ITA theory by requiring the
closure of the Jacobi identities. From this algebra we have then derived the field-strengths
of all the forms in the theory.

In this section we will perform precisely the same analysis for the case of maximal
gauged supergravity in five dimensions. We will derive the algebra Eﬁfgﬂ and from it we
will determine the field-strengths of the forms in the theory. The analysis follows exactly
the same steps as we have shown in the previous section for the case of the massive ITA
theory in ten dimensions. We will first review the E1; algebra as decomposed with respect
to its GL(5,R)® Eg subalgebra [14] which is relevant for the five-dimensional analysis. This
corresponds to deleting node 5 in the Dynkin diagram of figure 1. We will then consider
the algebra of the deformed generators which occur in the description of the gauged theory
from the E7; perspective. The commutation relations of these generators are completely
fixed by imposing Jacobi identities. The resulting algebra is such that the non-linear
realisation determines completely all the field-strengths of gauged maximal supergravity in
five dimensions. A different approach to gauge supergravities, based on E1g, was presented
in [34] for the three-dimensional case.

We now review the 11 commutation relations of the form generators up to the 4-form
included that occur in the decomposition of E1; with respect to GL(5,R) ® Eg [14]. These
generators are

RY Ra,M RabM Rabc,a Rade[MN]7 (61)

where RY, o = 1,...,78 are the Eg generators, and an upstairs M index, M =1,...,27,
corresponds to the 27 representation of Eg, a downstairs M index to the 27 of Eg and a
pair of antisymmetric downstairs indices [M N| correspond to the 351. The commutation
relations for the Fg generators is

[R*, R7] = [P, RY, (6.2)

where faﬁ,Y are the structure constants of Fg. The commutation relations of R* with all
the other generators is determined by the Eg representations that they carry. This gives

[R®, R%M] = (D®)yM Ro:N
(R, R3] = —(D*) N R®y
(R, R = 0, e
[R*, Ry n] = —(D*) " R p vy — (D*) N Ry, (6.3)
where (DY) n™ obey
(D%, D™ = [0 (D)™ (6.4)

,37,



The commutation relations of all the other generators are

[Ro-M | RbN| — gMNP gab ,

(RN R\ = gag(D®)prN RO

(R, Rely] = Rabcd MN]

[ROP, Rbeda] — MN}Rabcd[MN}’ (6.5)

where d™VF is the symmetric invariant tensor of Eg and Jap is the Cartan-Killing metric
of Eg. S®PIMN] ig also an invariant tensor, which the Jacobi identities fix to be

GaP[MN] _ _%D%[MdN]QP’ (6.6)

and which satisfies the further identity

Gap DY SIPMN] = 2 gl01 NIPR, (6.7)

One can show that all the Jacobi identities involving the generators in eq. (6.1) are satisfied
using the commutators listed above.

To obtain the field-strengths of the massless theory, one introduces the Og generators,
that encode the gauge transformations of all the fields. We focus in particular on the Og
1 generators for the Fy; generators listed in eq. (6.1), that are

Ka,b,M Ka,b1sz Ka7b1b2b370¢ K“vbl"'b4 [MN]s (68)

and whose commutators with the momentum operator are

[Ka’b’M Pc] _ 5((:aRb),M
[Ka’b1b2M, Pc] — 6aRb1b2 _ 5£aRb1b2}M
[Ka,blebg,a’ Pc] 6 Rblbgbg, 6([:aRb1b2b3]’a
[Ka’bl"'b4[MN],P] 5 Rb1- b4[ MN] — 5£aRb1...b4} (MN)- (6.9)

We then write down the group element

[MN] RO1--94

ajag
2P @0g KO8 JAar iag RNy " pAayagag,a R119203% QAR ) Ryp™? JAu i ROM o R (6.10)

)

g=c

where we denote with K% all the Og 1 generators listed in eq. (6.8) and with @ their
corresponding fields. One can then compute the Maurer-Cartan form, and use the inverse
Higgs mechanism to fix all the Og 1 fields in terms of derivatives of the F1; fields, in such
a way that only the completely antisymmetric terms in the Maurer-Cartan form survive.
These quantities are the gauge-invariant field-strengths of the massless theory obtained
in [20], which we list here

FalaQ,M = a[alAag} M

1
Filusas = Oar Aagag) + 50 Aay N Agg) pd™ "

aijazas3 a2a3
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1

thla2a3a4 = a[alAgzasad - éa[alAGQvMAa?HNAM]deMNQD%P - a[a1A¢]zV21a3Aa4],ND?\é/[N
1
Fa]‘/ll.{Y% = a[mA(]zVQI.].\.[as] o ﬂa[al Aaz,PAas7QAa47RAa5]7SdPQTD%RSaS[MN}

1 a0 oo 1
_58[a1AP Aa4,QAa5},RDPQS RIMN] +§a[a1A[M AN}

azas a203* “asas]

+8[a1A32a3a4Aas],PSaP[MN} (6.11)

for completeness.

We now consider the deformed case. We take as our set of generators that of egs. (6.1)
and (6.8), but to indicate that these generators themselves have been deformed, we denote
them with a tilde. The commutation relations receive order g corrections with respect
to the massless ones, where ¢ is the deformation parameter. We start from the com-
mutation relation between the deformed vector generator and the momentum operator.
We impose this to be

[R™M  py) = —gotOM R™, (6.12)

The quantity ©) turns out to be the embedding tensor [7], and the generators © R®
are the generators of the subgroup G of Ejg that is gauged. These generators belong to
the algebra Eﬁﬁcgl We now show that all the commutation relations of the deformed
operators among themselves and with the momentum operators are uniquely fixed by Ja-
cobi identities. From the resulting algebra we construct the non-linear realisation whose
Maurer-Cartan form gives the field-strengths of the gauged theory.

We first consider the Jacobi identity between ©M R*, R®N and P,. Defining

XMN — @M paN (6.13)

one gets
oMoy, —el XN =, (6.14)

which turns out to be the condition that the embedding tensor is invariant under the gauge
group. We then write the commutator of the 2-form R, with P, as

[R%® s, P) = —2gWasn 0@ RN, (6.15)

which defines the antisymmetric tensor Wysx. The Jacobi identity involving Ry, P, and
P, gives
Wun©) = 0. (6.16)

The Jacobi identity involving the operators R»M | RN and P, gives
[Ra,M’ Rb,N] _ dMNPRabP . QQXI[DMN]Ka,b,P’ (6.17)
using the fact that the Og 1 for the vector K®*M is symmetric in ab and satisfies
(KoM ] = 5l RV, (6.18)
To get eq. (6.17) one has also to impose

XMN) = _WpodQMN (6.19)
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The Jacobi identity between R, ON R and P. gives
X" Won =0, (6.20)

which is the condition that the tensor Wy, is invariant under the gauge subgroup G. The
Jacobi identity involving R%M | Ry and Py gives

N - - 1 -
[RM, R¥N] = (D)WY R0 + ;g<X%P +5X }GM> K®%p (6.21)

and
(R, Py) = —gOM sl by (6.22)

where the Og 1 operator K®; satisfies
- - - 92 - -
[0, Py = 64RY 0y — 01 RYyy — FIWan (KN = 5K ). (6.23)

Proceeding this way, one can determine all the commutators requiring the closure of the
Jacobi identities. This gives

[RabM’ Rch] _ RabchN _ 4gW(M‘P|D?\z[)PR[a,b]cda’ (624)

. - _ 1 -
[Ra,M7 Rdea] — S%[NP}RabchN _ g<f5’7a(_)fy + §D£M95> Ka,bcdﬁ (625)
and

(R, Py = —4gWar, p‘Dj’@]Pal[“lR“?“S“da, (6.26)

where we introduce the Og 1 generator for the 3-form K®10203 gsatisfying
. - - 3 .
[Renbabe,, ] = 6¢ RN, — 6 R0l — ZgopTo Kelehteta] (6.27)
In order to get these results one has to impose an additional constraint
20,08 — DEOL = 4D§ " Wengs, ST, (6.28)

which shows that the embedding tensor and Wj,ny are related by the invariant tensor
SaPIMN] and thus belong to the same representation of Eg, which is the 351.

To summarise, we have determined the commutation relations satisfied by the deformed
FE4q p-form generators, the corresponding deformed Og 1 generators and the momentum
operator of the five-dimensional massive theory starting from eq. (6.12) and imposing the
closure of the Jacobi identities. We will now determine the field-strengths of the 1-forms,

2-forms and 3-forms of the theory using these results. We consider the group element

>0 [MN] paqp...ayq ~ , M paiag Pa,M
et P ®og KO JAar ay BNy " JAajagay,a R19298:% JAG o) B2 JAa i R efoB* (6.29)

g = aja
where as in the massless case we denote with K©% all the deformed Og 1 generators and
with ® o, the corresponding fields. One can then compute the Maurer-Cartan form, and

use the inverse Higgs mechanism to fix all the Og 1 fields in such a way that only the
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completely antisymmetric terms in the Maurer-Cartan form survive. To compute the field-
strengths, it is thus sufficient to consider only the R operators and P, in the group element
above. The final result is

1
Falag,M = ({9[(1114@2]7]\/[ + §gX][\]/;[P]A[a17NAa2],P — QQWMNAN

aias
1 MN
Fal‘l/lagag = 8[(11 Atjz\/glag] + 58[(11 AamNAaa],PdMNP - 29X1(3 )ASIQQA%],N
1 o nvp
+69X1[% }dRQMA[al,NAaQ,PA[aS},Q + 90N AL s
1
Fa?l...azl = 8[a1 Agg...m;} - éa[mAa2,MA037NAa4LPdMNQD22P - a[alAggasAM],ND?\[dN

—i—gDJO\ZP@%A[al,PAi_.M] + 49D " WeN AN — gDy P WeN A AN

ay...aq [a1a2* aza4]
—gD3 P XS Ay, pAay RAS

azaa]
1

MN N
249X1[q ]dRPSDsQA[al,MAag,NAag,PAa4],Q (6.30)

These are the field-strengths of the five-dimensional gauged maximal supergravity [20].
One can also derive the gauge transformations of the fields from the non-linear realisation
as they arise as rigid transformations of the group element, g — ggg, as long as one includes
the Og generators. The result is

5Aa,N = O, AN — gASX]%MAaM + QQWMPA(];
1
GAN 4y = O A2y + 53[alAgAa21TdSTN + gAs X3 AL, + 2Wsp Al Agyrd®™

a1ag aijaz
_gAglag Gézv
1
0AG 4305 = Ofar Moyas] + O At AL as] DM 4+ E%AMA@,N Agy pdMNODYP

—gApOL F AT s + QQWMPA[ZID?\‘[MAZGB}

[a1

—4gD$ P WpNAMY (6.31)

aiazasz*

1
+ ggWMRAR dMNQ ID%PAG2 ,NAag]

In [20] these transformations were derived both from Ej; and from requiring the closure
of the supersymmetry algebra. Indeed, the commutator of two supersymmetry transfor-
mations on these fields gives the gauge transformations above provided that the fields are
related by dualities. In particular the 1-forms are dual to 2-forms while the 3-forms are
dual to scalars in five dimensions. The field-strength of the 4-form is dual to the mass
parameter. The field strengths and gauge transformations obtained here precisely agree
with those obtained by supersymmetry.

In the above we have taken Jacobi identities with all the deformed generators of
egs. (6.1) and (6.8) with the exception of R®, but we have instead restricted our use
to ©M R, Using the Jacobi identities for R* would lead to results that are too strong.
A solution to this problem, at least at low levels, requires adding to spacetime the scalar

charges in the [ multiplet, as was done in [20]. In this case the Jacobi identities are au-
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tomatically satisfied. Adding the higher charges in the [ multiplet may also resolve this
problem at higher level.

To summarise, we have thus shown that the methods explained in this paper give an
extremely fast way of computing the field strengths of all the forms and dual forms of
five-dimensional gauged maximal supergravity. These methods can be easily generalised
to any dimension, providing a remarkably efficient way of determining the gauge algebra
of any massless or massive theory with maximal supersymmetry.

7 The dual graviton

Any very-extended Kac-Moody algebra, when decomposed in terms of a GL(D,R) sub-
algebra which one associates to the non-linear realisation of gravity, contains a generator
with D — 2 indices in the hook Young tableaux irreducible representation with D — 3 com-
pletely antisymmetric indices, that is R®P1-tp-3 with Rl®b1-bo-sl — ( (in the case of E1q
decomposed in terms of GL(11,R), this generator is Ra’bl"'bg). The field associated to this
generator in the non-linear realisation has the degrees of freedom of the dual graviton. The
Kac-Moody algebra therefore describes together the graviton and the dual graviton. In this
section we will consider the Og operators for the dual graviton. We will focus on the four-
dimensional case, in which the dual graviton generator R® is symmetric in its two indices.

In subsection 7.1 we will first consider the case of the dual graviton in flat space.
This corresponds to considering the dual graviton generator by itself, together with its
corresponding Og generators. This does not arise from any very-extended Kac-Moody al-
gebra. A field theory description of a linearised dual graviton is known to exist, and its
field equations in four dimensions were first obtained by Curtright [35]. For subsequent
developments see [1, 36].

We then consider the dual graviton coupled to gravity. The simplest very-extended
Kac-Moody algebra whose non-linear realisation gives rise to a four-dimensional theory
is the algebra Af++, whose Dynkin diagram is shown in figure 5. The corresponding
spectrum does not contain any form. We will show that there is no consistent solution
of the inverse Higgs mechanism that leaves a propagating dual graviton. We will also
consider the case of Fq1 in four dimensions, which corresponds to deleting node 4 in the
diagram of figure 1, leading to the internal symmetry algebra E7. In this case we will show
that even considering linearised gravity, that is neglecting the GL(4,R) generators and the
corresponding Og generators, and only considering interactions of the dual graviton with
matter, one is left with no consistent field strength for the dual graviton. This result is
consistent with [37], where it was shown that it is impossible to write down a dual Riemann
tensor in the presence of matter even when gravity is treated at the linearised level.

In the first subsection we will only consider the algebra of R* and all the corresponding
Og generators. The Maurer-Cartan form, that can be thought as the Maurer-Cartan form of
AIFJFJF or F11 truncated to this sector, leads to invariant quantities that can be constrained
by means of the inverse Higgs mechanism to generate the Riemann tensor for the linearised
dual graviton. In the second subsection we will then consider the case of dual graviton
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Kobe, | Kbed, []
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Rgte: (T3 | Rghet. [TTT0

Figure 3. The Young tableaux of the first Og and Og generators for the dual graviton in four
dimensions.

coupled to gravity, which corresponds to the algebra Af++, and in the third subsection we
will consider the Fq; case of the dual graviton coupled to vectors with linearised gravity.

7.1 The dual graviton in four dimensions

In this subsection we want to consider the dual graviton alone, that is without introducing
the generator associated to the graviton or any other matter generator. We want to show
that one can introduce suitable Og generators for the dual graviton in such a way that gives
rise to a consistent field strength and consistent gauge transformations. The dual graviton
generator in four dimensions is a generator with 2 symmetric indices R®. Following the
notation of the previous section, we define two Og 1 generators K b and f(fbc in the
irreducible GL(4,R) representations defined as

b (b b
Kiz C:Kf(C) Kfa c)zo
Kobe = flabe), (7.1)

and whose corresponding Young tableaux are shown in figure 3. Note that the sum of
these two representations corresponds to an object with three indices, symmetric under
the exchange of two of them and with no further constraint. These operators satisfy the

commutation relations

(K7, Py) = 63RY — (' R™
(K%, Py = 84" R™), (7.2)

while we take R% as commuting with P,. We also take R as commuting with itself
because we are considering the dual graviton alone (for instance in A;FJFJF the dual graviton
is a generator at level 1, and therefore the commutator of two dual graviton generators
leads to an operator at level 2). Also all the dual graviton Og generators are taken to
commute with each other, and to commute with R* as well.
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We now consider the Og 2 operators. These are Kg’de and f(gde in the GL(4,R)
representations

Ka,bcd _ Kg,(bcd) Kéa,bcd) —0

2
r-abc =~ (abcd
Kghed = R§™D, (7.3)

whose Young tableaux are shown in figure 3, and their commutation relation with P, is

[Kg,bcd’ Pe]

2 - -
SR 4 ST - 8K )
[Kgvd p] = @K, (7.4)
The coefficient % in the first commutator can be obtained from the Jacobi identity involving
Ka,bcd )
o and two P’s.
We will now compute the Maurer-Cartan form, and we will first consider only the

contribution from dual graviton and the Og 1 fields, while the Og 2 fields will be included
later. We thus consider the group element

1 a,bc zq ab b
em'Peqz‘a,chl eq)achil CeAabRa , (75)

g =
from which one computes the Maurer-Cartan form

971049 = Pu+ (04 Aap — @} gy — L) R+ (7.6)

which is invariant under

6Aab = Qgp + xcbc,ab + xci)abc

5(I>clz,bc = ba,bc
5D} pe = bape- (7.7)

The first of eqgs. (7.7) is reproducing the gauge transformation for the dual graviton
in flat space,
dAa = Oy (7.8)

at linear order in x, that is quadratic order in x for the gauge parameter A,
1-
Ay = agpz’ — ba,bcxbxc + Ebabcxbxc. (7.9)

One can solve for inverse Higgs in such a way that the whole Maurer-Cartan form
proportional to R* vanishes compatibly with the symmetries. This corresponds to fixing

yab = OpAab — O Aap) (7.10)

and
q);lt,ab = a(,ufélatb)- (711)

The fact that reproducing the gauge transformations for A, at linear order in x allows
one to eliminate completely the Maurer-Cartan form proportional to R by means of the
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inverse Higgs mechanism corresponds to the fact that one cannot write a gauge invariant
quantity at linear order in the derivatives. Note that there is a crucial difference here with
respect to the non-linear realisation of gravity discussed in section 2. In that case the part
of the Maurer-Cartan form proportional to the generators of the local subalgebra SO(D)
gives the SO(D) connection, which becomes the spin connection once the inverse Higgs
mechanism is applied. In this case the dual graviton field is already symmetric, and thus
there is no corresponding local Lorentz symmetry. It is for this reason that at this level
the Maurer-Cartan form vanishes once the inverse Higgs mechanism is applied.

We now consider the contribution from the Og 2 fields. We write the group element as

2 a,bcd  zo abed 1 a,bc zq ab b
g = el‘-Pe‘I)a’bchg e<1>abchS “ eq)a,chl eéachf ceAabRa s (712)

and obtain the corresponding Maurer-Cartan form

909 = Py + (0 Ay — P oy — L RY

w,ab pab
,b
+(aﬂq)(11,bc - (I)Z,ubc)Kf ‘
~ 2 ~ ~
+ (a&;bc - g‘bi,abc - q)fmbc> Kebe ... (7.13)

Having introduced the Og 2 operators, the transformations of the field that leave the
Maurer-Cartan form invariant acquire additional contributions, and in particular there is
a term in the variation of A, which is quadratic in z. The result is

0Aap = aap + e ap + TDape + gxcxdcwbd - %xcxdc(qab)d + %wcxdéabcd
0} pe = bape + T Caped — T¢(ape)d
5&)¢1z,bc = Ba,bc + %xdcd,abc + xdéabcd
5(I>c2z,bcd = Ca,bcd
02 o = Caed: (7.14)

In particular the first of these variations is the most general gauge transformation for the
field Agp of the form (7.8) up to terms cubic in x.

We now apply the inverse Higgs mechanism, solving for the fields (I%bcd and @?Md in
terms of A,,. The result is

1
D2, = Z[aaabAcd + 0,0cAdy + 0404 Ape — Op0cAah — Op04Aac — 0c0qAqp)
(i)c%bcd = a(aabAcd) : (715)

Plugging this into the Maurer-Cartan form, one notices that there is a non-vanishing term
. a,bc .
proportional to K", that is

1 1 1 1
g_laug =P, + <§auaaAbc — ga,ﬁbAac — gaaabA,w + g@bacA,w> Kf’bc +---. (7.16)

This is indeed the Riemann tensor of linearised gravity Dy .4, which is a tensor in the
window-like Young tableaux representation.
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Figure 4. The dimensional reduction of the dual graviton and its Og fields. Each field is aligned

horizontally with its corresponding Og fields. The rest of the Og n fields are associated to the y
derivative of the Og (n — 1) fields. The dimensional reduction also produces Og 1 fields for the

vector and the scalar.

One can introduce in the same way the higher Og generators, constructing in this
way gauge invariant quantities which are derivatives of the Riemann tensor. The end
result is thus

97109 = Py + Dy pe K + -+ (7.17)

where the dots correspond to derivatives of the dual graviton Riemann tensor
1 1 1 1 1 1
Dap,ca = gaaabAcd - éaaacAbd - éaaadAbc - éabacAad - éabadAac + gacadAab (7.18)

contracted with higher order Og generators. This shows that the linearised dual graviton
admits a description in terms of R* and Og generators, and the corresponding Maurer-
Cartan form contains the correct Riemann tensor, which can be used to construct the dy-
namics.

We now want to perform a dimensional reduction on a circle of coordinate y. We thus
take the dual graviton and all the Og fields to be y independent. The representations of
GL(3,R) that arise in the three-dimensional compactified theory are shown in figure 4 for
the dual graviton field and the first two Og fields. The circle dimensional reduction corre-
sponds to the assumption that neither the dual graviton field nor the Og fields depend on y.
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The dual graviton A, in four dimensions has two symmetric indices, and after dimen-
sional reduction it leads to an object with two symmetric indices A, a vector A, = Agy
and a scalar A = A,,. As the figure shows, the Og 1 fields can be divided in three sets. The
first one contains the Og fields for the field with two symmetric indices A, and the vector
Ag,. This is precisely what we want in order to obtain the correct gauge transformations
for the three-dimensional fields. The second set contains the same representations as the
dimensionally reduced fields. The dy part of the Maurer-Cartan form contains these fields
summed to the y derivative of the dimensionally reduced fields. Thus, from the requirement
that the fields do not depend on y it follows that these Og fields can be put to zero using
the inverse Higgs mechanism. Finally, the third set contains a field with two antisymmetric
indices and a vector, and we call these fields the Og 1 fields for the vector and the scalars.
These fields are the ones of interest to us in the following. The dimensional reduction of
the Og 2 fields gives the Og 2 fields for the field with two symmetric indices and the vector,
together with a set of fields in the same representations as the dimensionally reduced Og 1
fields, and again the dy part of the Maurer-Cartan form contains these Og 2 fields summed
to the y derivative of all the Og 1 fields. Using y independence and the inverse Higgs
mechanism one thus sets to zero these Og 2 fields.

We now explain the occurrence of the Og 1 fields and generators in the dimensional
reduction. In the four-dimensional theory, once the inverse Higgs mechanism is applied
the Maurer-Cartan form is given in eq. (7.17), and the first non-vanishing term is the dual
graviton Riemann tensor, which is at second order in derivatives. Using the y-independence
of the fields, the dimensional reduction of the Riemann tensor leads to the Riemann tensor
for Ay in three dimensions together with

1 1
Dab,cy = gaanc + ga(bﬂak)
1
Daby = 504064, (7.19)

while Dgy 4, vanishes. Here we have denoted with Fyp = 0, Ay the field-strength of the
vector. As eq. (7.19) shows, the Maurer-Cartan form in three dimensions thus contains the
Riemann tensor of A, together with the derivative of the field-strength of the vector and
the double derivative of the scalar. This implies that among the rest, the Maurer-Cartan
form is invariant under the transformations

§A, = a’bpy  6A = bea®, (7.20)

which indeed lead to
0Fy,, = b[ab] 0(0,A) = bg. (7.21)

Such transformations cannot be written as standard gauge transformations for the corre-
sponding fields, and indeed they do not leave the field strength invariant, although they
are symmetries of the dimensionally reduced Riemann tensor. They are generated by the
operators associated to the Og 1 fields in figure 4, and in general we define the Og genera-
tors as those producing transformations that cannot be written as gauge transformations.
The Og 1 fields in figure 4, together with the standard Og 1 fields for Ay, and A,, are such
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Figure 5. The AT ™" Dynkin diagram.

that all the terms with one derivative of the fields in the Maurer-Cartan form vanish once
the inverse Higgs mechanism is applied. The standard gauge transformations of the fields
are obtained by performing a truncation that projects out the Og 1 generators, and once
this truncation is performed one can no longer use the inverse Higgs mechanism to cancel
the one derivative terms completely, which indeed give F; and the derivative of the scalar.

7.2 The dual graviton in A1H'+ in four dimensions
The non-linear realisation based on the algebra Ai’"H', whose Dynkin diagram is shown in
figure 5, has the particular feature of only containing in four dimensions the graviton and
its duals, which are fields with two symmetric indices together with an arbitrary number of
blocks of two antisymmetric indices, as well as generators with sets of 3 or 4 antisymmetric
indices. This in particular means that the spectrum does not contain any forms, that is
fields with completely antisymmetric indices.

Decomposing the adjoint representation of A7+ in representations of GL(4,R) one
gets K% at level zero, which are the generators of GL(4,R), and R at level one. The
generators at higher level can be obtained as multiple commutators of R subject to the
Serre relations, and the number of indices of a generator at level [ is 2[. We will ignore all
the generators of level higher than 1 in this subsection. The commutation relation between
K% and R™ is

[K%, R%] = 6y R™ + 5] R*. (7.22)

We now want to introduce the Og generators for both the graviton and the dual
graviton, in order to reproduce the correct general coordinate transformation for the fields,
as well as the expected gauge transformation for the dual graviton. As in the previous
subsection, we have

[R®, P.] = 0. (7.23)

We thus obtain the commutator between the gravity Og 1 operator K%, and R® by the
Jacobi identity with P,. The result is

[K%,, R%) = §9KO 4 56 K™ — 2(8LK Y 4 6¢ K70, (7.24)

Similarly, imposing the Jacobi identity between P,, K%, and the Og 1 dual graviton oper-
ators gives

(K%, K7 = 05K + G KT + O K™
(K%, K{%] = 36\°K{" (7.25)

as expected from the index structure of the operators.
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We would expect that the commutator between the Og 1 gravity operator K%, and
the dual graviton Og 1 operators gave the Og 2 dual graviton operators in figure 3 if a
description of both gravity and dual gravity were possible. This turns out to be impossible,
i.e. one can show that the Jacobi identity between K ab P, and either K f b or K fbc is not
satisfied if the commutator between K. and the dual graviton Og 1 operators gives dual
graviton Og 2 operators. This is indeed the problem that one typically encounters when
trying to construct a dual Riemann tensor.

One can define an operator K5 satisfying

R-gb,cd _ Réab),cd _ gb,(cd) _ R-zcd,ab R-g(b,cd) — 0, (7.26)
whose corresponding Young tableaux is shown in the last column in figure 3. We define
the commutation relation of this operator with P, to be

— ab,cd 1 qb)ed 1 oorrd)ab
(K5, P = 5 K +§5§K1> . (7.27)

This is indeed the most general result compatible with the symmetries, and one can show
that the Jacobi identity with a further P, operator is satisfied.

If one adds the term exp(‘izb,cdkgb’(:d) to the group element of eq. (7.12), one obtains
that a transformation

5D2y cq = Cabied (7.28)

implies an z? transformation for A, of the form

0Ag = %Eab,cd:vcxd. (7.29)
This transformation cannot be written as a gauge transformation of eq. (7.8) for the lin-
earised graviton. Following the arguments of the previous subsection, we refer to I_(gb’Cd
as an Og operator. The inverse Higgs mechanism allows to gauge away completely all the
terms at most quadratic in x in the field, with this still being compatible with all the sym-
metries.
Having introduced the operator K3 b’Cd, one obtains that the commutator between K,
and the dual graviton Og 1 operators can now be made compatible with the Jacobi identity
with P,. The result is

(Ko, KT = —65le kLD o 65ld ool o osi feelab g5l ggelleb
— 4GRS sl RS

[Kabc, f{flef] — 35((:dK2€7f)ab o 106((2dk2€f)ab ),ab‘

+ 289K (7.30)
The fact that K 5 bed pust appear on the right hand side of this commutation relation is the
main result of this section. This shows that the only inverse Higgs mechanism compatible
with the symmetries is the one that gauges away the dual graviton completely. We expect
that once all the Og operators for the dual graviton are introduced together with the Og
operators for both the graviton and the dual graviton, the resulting algebra is well defined.
A+

We conjecture that the same applies to all the generators of with positive level. As a
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consequence of this, after having applied the inverse Higgs mechanism, the Maurer-Cartan
form will contain only the graviton Riemann tensor and its derivatives.

It is interesting to discuss the dimensional reduction to three dimensions in this case as
we have done in the previous subsection. Following arguments similar to that case, one can
show that the dimensional reduction of all the generators in figure 3 contains the Og 1 and
Og 2 generators for the scalar and the vector, and more generally the dimensional reduction
of all the Og and Og dual graviton generators leads to all the Og and Og generators for
the dimensionally reduced fields. The algebra of the dimensionally reduced theory can be
truncated in such a way that the Og generators for the scalar and the vector that arise
from the reduction of the dual graviton can be consistently projected out, so that the
corresponding Maurer-Cartan form results in the field-strengths for this fields, as well as

their derivatives, once the inverse Higgs mechanism is applied.

7.3 The dual graviton in E;JFJF in four dimensions

In this subsection we want to discuss the case in which the dual graviton couples to matter.
We will discuss the case of the non-linear realisation of Eg' *+ ie. By, in four dimensions,
which corresponds to the bosonic sector of four-dimensional maximal supergravity. The
Dynkin diagram of E7; is shown in figure 1, and the four dimensional theory is obtained
deleting node 4 in the diagram. The internal symmetry is E7, and the spectrum contains
among the rest vectors in the 56 of E7. We will show that even neglecting couplings to
gravity, it is impossible to make the gauge transformation of the dual graviton compatible
with that of the vector. The situation is exactly as in the previous subsection: the commu-
tator of two Og 1 operators for the vector generate the operator Ky b’Cd, which is an Og 2
operator for the dual graviton.

Decomposing the adjoint representation of Fy; in representations of GL(4,R) one gets
at level zero the gravity generators K% and the Ey generators R, while at level 1 one
gets R*M where M denotes the 56 of E;7. The higher level generators can be obtained as

multiple commutators of R . In particular at level 2 one gets
[Ra’M,Rb’N] _ Dé\[dNR[ab],a + QMNRab, (731)

where R is the 2-form generator in the adjoint of E; and R% is the dual graviton

generator. We have also introduced
DMN — QMP paN (7.32)

which is symmetric in M N, and D]O\‘/[N are the generators in the 56. Finally Q™" is the
antisymmetric invariant tensor of E7. The field associated to the generator R is related
to the scalars by duality. In the rest of this section we will ignore the 2-form contribution
to the commutator of eq. (7.31), and we will only consider the dual graviton contribution,

[RMM | RN = QMN Rab, (7.33)

This truncation of the algebra is consistent because the Jacobi identities close independently

on the 2-form generators and on the dual graviton generators.
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The Og 1 generator for the vector R*M is a generator KM symmetric in ab, whose
commutation relation with P, is

(KM p.| = 5le ROM, (7.34)

The commutation relation of K%M with R can be obtained by imposing the Jacobi
identity of these operators with P, and using egs. (7.2), eq. (7.33) and eq. (7.34), as well
as the fact that R*M commutes with P,. The result is

1 ~
[Ra,M,KbQN] — _§QMNKf7bC + QMNKla’bc‘ (735)

We can now write the group element up to Og 2 generators,

1 abe 1 frab b, M b M
ex'Peq)a,bCKl eq)achf Ceq)ab,]MKa eAabRa BAG,MRQ , (736)

g:

which leads to the Maurer-Cartan form

1
g_laﬂg = P‘u + (8ﬂAa,M — q)“a,M)Ra’M + <8ﬂAab + §QMN8“AG7MAI)7N

~@ah — Pt — ‘bua,MAb,NQMN) R+ (7.37)
The inverse Higgs mechanism then leaves the field strength for the vector, while the term
contracting R is put to zero by solving for Q)i’ab and (i);lmb in terms of Ag, and Ag .
We now compute the commutator of two Og 1 operators KM for the vector, and we
determine which Og 2 generators are needed to satisfy the Jacobi identities. It turns out
that because of the symmetry of the commutator, it is not possible to generate the Og 2
dual graviton operator Ky ’de, and the Jacobi identity with P, imposes that this actually
closes on K84 and K$"“. The result is

(KM | feedN] = gMN fgabed _ MN frabed (7.38)

Thus exactly as in the case of the dual graviton coupled to gravity of the previous subsection
we have found here that the commutator of two Og operators generates an Og operator for
the dual graviton, which means that a gauge invariant field strength for the dual graviton
is not compatible with vector gauge invariance.

We claim that this is a generic feature of Eq; positive level generators with spacetime
indices with mixed symmetry. The algebra of their Og generators does not close, and one
is forced to introduce Og generators for all these mixed symmetry generators. Only for the
gravity generator, which has level zero, and for the generators with completely antisym-
metric indices the Og algebra closes. As a consequence only for these fields can one use
the inverse Higgs mechanism and be left with a non-vanishing field-strength. The fact that
the positive level mixed symmetry generators require the introduction of the Og and Og
generators implies instead that the corresponding fields do not allow a gauge invariant field
strength and the inverse Higgs mechanism gauges away these fields completely. To show
this one computes Jacobi identities involving positive level F1; generators, Og generators
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and the momentum operator P,. Thus this result deeply relies on the structure of the Fqq
algebra. The dimensional reduction allows a further truncation of the algebra in the case in
which a mixed symmetry generator gives rise to a generator with completely antisymmetric
indices. Indeed in this case, as was shown in the previous subsections, the Og generators
can be consistently projected out.

It is important to stress that the dynamics is compatible with this construction. The
field strengths of the antisymmetric fields are first order in derivatives, and therefore one
needs fields and dual fields to construct duality relations which are first order equations
for these fields. The gravity Riemann tensor instead is at second order in derivatives and
thus there is no need of a dual field to construct its equation of motion.

8 Conclusions

In this paper we have given a method of obtaining field strengths and gauge transformations
of all the massless and massive maximal supergravity theories starting from Fy1. The global
FE4q transformations of the fields are promoted to gauge transformations by the inclusion
in the algebra of additional generators.

We have first shown how this mechanism works for pure gravity. We have constructed
Einstein’s theory of gravity using a non-linear realisation which takes as its underlying
algebra one that consists of /GL(D,R) and an infinite set of additional generators whose
effect is to promote the rigid IGL(D,R) to be local. This infinite number of additional
generators lead to local translations, that is general coordinate transformations, but to no
new fields in the final theory as their Goldstone fields are solved in terms of the graviton
field using a set of invariant constraints placed on the Cartan forms. This is an example
of what has been called the inverse Higgs effect [23].

We have then generalised this procedure to Ep; at low levels. We have taken the
algebra, called Eﬁcal consisting of non-negative level E1; generators, the generators P, and
an infinite number of additional generators, whose role is to promote all the low level Fqq
symmetries to gauge symmetries. Again, as in the gravity case these generators do not
lead to new Goldstone fields. We have shown that the non-linear realisation of the algebra
Eigeal describes at low levels in eleven dimensions the 3-form and the 6-form of the eleven
dimensional supergravity theory with all their gauge symmetries.

We have then considered in general the formulation of D-dimensional maximal gauged
supergravity theories from the viewpoint of the enlarged algebra E{OIC%I We have first con-
sidered as a toy model the Scherk-Schwarz dimensional reduction of the IIB supergravity
theory from this viewpoint. One starts from the algebra Eﬁc% p corresponding to the IIB
theory and take the ten dimensional space-time to arise from an operator Q which is con-
structed from @ = Py and part of the SL(2,R) symmetry of the theory. This means that
the 10th direction of space-time is twisted to contain a part in the SL(2,R) coset symmetry
of the theory. This non-linear realisation gives a nine dimensional gauged supergravity. We
have observed that not all of the algebra E%Ol‘flo p 1s essential for the construction of the
gauged supergravity in nine dimensions, but only an algebra which we call Eﬁfgl which
is the subalgebra of Eﬁf%B that commutes with Q. Its generators are non-trivial com-
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binations of Fq1 generators and the additional generators and in general the generators
of Eﬁfgl have non-trivial commutation relations with nine dimensional space-time trans-
lations. Although the subalgebra E%"fgl appears to be a deformation of the original E1q
algebra and the space-time translations we have not changed the original commutators,
but rather the new algebra arises due to the presence of the additional generators which
are added to the Ej; generators.

However, we have then shown that one can find the algebra Eﬂcgl without carrying out
all the above steps. Given the non-trivial relation between the lowest non-trivial positive
level generator of Eﬁfgl and the nine dimensional space-time translations one can derive the
rest of the algebra Eﬁfgl simply using Jacobi identities. This algebra determines uniquely
all the field strengths of the theory, and thus one finds a very quick way of deriving the
gauged supergravity theory.

This picture applies to all gauged supergravity theories, as one can easily find the
algebra E}‘ﬁ‘)l without using its derivation from E3® and this provides a very efficient
method of constructing all gauged supergravities. We have illustrated how this works
by constructing the massive IIA theory as well as all the gauged maximal supergravi-
ties in five dimensions.

Finally, we have considered how this construction generalises to the fields with mixed
symmetry, i.e. not completely antisymmetric, of F1; and in general of any non-linear real-
isation of a very-extended Kac-Moody algebra. We have considered as a prototype of such
fields the dual graviton in four dimensions. If one tries to promote the global shift symme-
try of the dual graviton field to a gauge symmetry, one finds that this is not compatible
with the F7; algebra. The solution of this problem is that actually F1; forces to include
additional generators, whose role is to enlarge the gauge symmetry of the dual graviton
so that one can gauge away the field completely. This also applies if one only restricts his
attention to the compatibility of the dual graviton with matter fields, that is if one neglects
the gravity generators. This result agrees with the field theory analysis of [37]. More gen-
erally, this agrees with the no-go theorems of [38] on the consistency of self-interactions
for the dual graviton. Recently, an alternative approach to the construction of an action
for the dual graviton has been taken [39], in which the metric only appears via topological
couplings, and an additional shift gauge field is included.

As we have mentioned in the introduction it is not obvious how to to implement the
conformal group, or equivalently, add the Og fields in the presence of the generators of
the [ multiplet. The rational for introducing the [ multiplet was that it would allow an
FEy1 way of encoding space-time. However, in this paper we have chosen to take only
the first component of the [ multiplet, namely the space-time translations and we have
taken this to commute with the positive level E1; generators. As a result we have had to
discard the negative level Fy; generators. This is unsatisfactory as Fy; is defined from its
Chevalley generators and relations and there is no definition that uses only the positive
levels. For this reason the content of the adjoint representation and the [ multiplet also
rely on the negative root generators. However, we know that many of the generators, and
so fields in the non-linear realisation, in the former and brane charges in the latter are in
very convincing agreement with what one might expect in M theory. One example being
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the classification of all gauged supergravities using the D — 1 forms found in the adjoint

representation of F17. How to reconcile local symmetries, space-time and the full Eqq

algebra is for future work.
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